ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

FISIOLOGIA SISTEMA NERVIOSO


Enviado por   •  8 de Marzo de 2015  •  5.467 Palabras (22 Páginas)  •  418 Visitas

Página 1 de 22

GENERALIDADES

El sistema nervioso proporciona, junto al sistema endocrino, la mayor parte de funciones de regulación del cuerpo. En general, el sistema nervioso regula las actividades rápidas del cuerpo, como la contracción muscular, cambios súbitos en la actividad visceral e índices de secreción de algunas glándulas endocrinas. Asimismo, lleva a cabo tareas complejas como el habla, la memoria, el recordar, etc. Estas actividades diversas pueden agruparse en tres funciones básicas:

1. Funciones sensoriales: Gran parte de las actividades del sistema nervioso se inician por la experiencia sensorial que llega de los receptores sensoriales, como receptores visuales, auditivos, táctiles u otros. Esta experiencia sensorial ocasiona una reacción inmediata o bien la memoria la almacena en el cerebro durante minutos, horas o años; estas experiencias determinan las reacciones corporales que se ejecutan tiempo después. Las neuronas que transmiten la información sensorial al encéfalo o a la médula espinal se denominan neuronas sensoriales o aferentes.

2. Funciones integradoras: Las funciones integradoras consisten en la capacidad del SNC de procesar la información sensorial, analizándola y almacenando parte de ella, lo cual va seguido de la toma de decisiones para que tenga lugar una respuesta apropiada. Muchas de las neuronas que participan en las funciones integradoras son interneuronas, cuyos axones contactan neuronas cercanas entre sí en el encéfalo, médula espinal o ganglios. Las interneuronas representan la inmensa mayoría de las neuronas de nuestro organismo.

3. Funciones motoras: Las funciones motoras consisten en responder a las decisiones de la función integradora para regular diversas actividades corporales. Esto se realiza por regulación de:

a) Contracción de los músculos esqueléticos de todo el cuerpo.

b) Contracción de músculo liso en órganos internos.

c) Secreción de glándulas exocrinas y endocrinas en algunas partes del cuerpo. Estas actividades se denominan colectivamente funciones motoras del sistema nervioso, y los músculos y glándulas se llaman efectores.

Las neuronas encargadas de esta función son neuronas motoras o eferentes, que transmiten información del encéfalo y médula espinal a las diversas estructuras corporales.

ORGANIZACIÓN FUNCIONAL

Desde un punto de vista funcional el sistema nervioso se divide en sistema nervioso somático, sistema nervioso autónomo y sistema nervioso entérico.

El sistema nervioso somático (SNS) consta de:

1. Neuronas sensitivas, la cuales transportan hacia el SNC información de receptores somáticos situados en la superficie corporal y algunas estructuras profundas, y de receptores de los órganos de los sentidos (vista, oído, gusto y olfato).

2. Neuronas motoras, las cuales conducen impulsos desde el SNC hasta los músculos esqueléticos. El control de las respuestas motoras del SNS es voluntario.

El sistema nervioso autónomo (SNA) consta de:

1. Neuronas sensitivas, la cuales transportan hacia el SNC información de receptores autonómicos situados en las vísceras (p.e. estómago, pulmones, etc.).

2. Neuronas motoras, las cuales conducen impulsos desde el SNC hasta el músculo liso, el músculo cardíaco y las glándulas. El control de las respuestas motoras del SNA es involuntario. La parte motora del SNA consta de dos divisiones: la división simpática y la división parasimpática.

El sistema nervioso entérico (SNE) representa el “cerebro” del tubo digestivo. Sus neuronas se extienden a lo largo del tracto gastrointestinal (GI). Las neuronas sensitivas monitorizan los cambios químicos que se producen en el interior del tracto GI y el grado de estiramiento de su pared. Las neuronas motoras controlan la contracción del músculo liso del tracto GI y las secreciones de sus órganos.

FISIOLOGÍA DE LAS NEURONAS

Las neuronas se comunican entre sí a través de potenciales de acción o impulsos nerviosos. La producción de potenciales de acción depende de dos características básicas de la membrana plasmática: el potencial de membrana en reposo y canales iónicos específicos.

Cómo en muchas otras células del cuerpo, la membrana plasmática de las neuronas posee un potencial de membrana, es decir, una diferencia de potencial entre el interior y el exterior de la membrana. El potencial de membrana es como la carga almacenada en un acumulador. Cuando la neurona está en reposo este potencial se denomina potencial de membrana en reposo.

El potencial de acción o impulso nervioso es una secuencia rápida de fenómenos que invierten el potencial de membrana, para luego restaurarlo a su estado de reposo. Se produce tras la llegada a la célula de un estímulo y, gracias a la excitabilidad de las neuronas, éste se transforma en potencial de acción. Durante un potencial de acción, se abren y después se cierran dos tipos de canales iónicos:

1. Primero se abren canales que permiten la entrada de Na+ a la célula, lo cual provoca su despolarización.

2. Después se abren canales de K+, con lo que ocurre la salida de estos iones y se genera la repolarización.

Los potenciales de acción siguen el principio o ley del todo o nada: si la despolarización alcanza el valor umbral (-55mV), se abren los canales de Na+ y se produce un potencial de acción que siempre tiene la misma amplitud.

El potencial de acción se genera en muchas ocasiones al inicio del axón y se propaga a través del axón hasta las terminales sinápticas. De esta forma las neuronas pueden comunicarse entre sí o con los órganos efectores. La conducción a través de las fibras mielínicas se produce a través de los nódulos de Ranvier.

Cuando un impulso nervioso se propaga en un axón mielínico, la despolarización de la membrana plasmática en un nódulo de Ranvier ocasiona un flujo de iones (Na+ y K+) en el citosol y líquido extracelular que abren los canales de Na+ del siguiente nódulo,

desencadenando un nuevo potencial de acción, y así sucesivamente. Puesto que la corriente fluye por la membrana sólo en los nódulos, el impulso parece saltar de nódulo a nódulo. Este tipo de transmisión de impulsos se denomina conducción saltatoria y condiciona un aumento en la velocidad de propagación de los impulsos nerviosos. En los axones amielínicos la conducción es continua. La conducción nerviosa en los axones mielínicos puede ser 100 veces más rápida que en los axones amielínicos.

Los impulsos nerviosos no pueden propagarse a través de la hendidura sináptica.

Por ello, en las sinápsis se precisa de una sustancia química, los neurotransmisores, que facilitan la transmisión de los impulsos nerviosos entre las distintas células. En las terminales sinápticas, la neurona presináptica libera un neurotransmisor que difunde en la hendidura sináptica y actúa en receptores de la membrana plasmática, de la neurona postsináptica. La unión de los neurotransmisores con sus receptores ocasiona la apertura de canales iónicos y permite el flujo de iones específicos a través de la membrana. De acuerdo con el tipo de iones que admiten los canales, el flujo iónico produce despolarización (y, por tanto, se transmite el impulso nervioso) o hiperpolarización (y, por tanto, se frena la transmisión del impulso nervioso).

FISIOLOGÍA DE LA SENSIBILIDAD: TACTO

Las diferentes modalidades sensoriales pueden agruparse en dos categorías: los sentidos generales y los especiales.

Los sentidos generales abarcan los sentidos somáticos y los viscerales. Los sentidos somáticos incluyen la sensibilidad superficial o exteroceptiva (tacto, dolor y temperatura superficial) y sensibilidad propioceptiva o profunda (de músculos y articulaciones, y de los movimientos de la cabeza y extremidades). Las sensaciones viscerales aportan información acerca del estado de los órganos internos.

Los sentidos especiales abarcan las modalidades de olfacción, gusto, visión, audición y equilibrio.

Vías sensitivas somáticas

Los receptores sensoriales de los sentidos generales están situados en la piel y mucosas (receptores táctiles, termorreceptores, receptores del dolor), en los músculos, tendones y articulaciones (receptores propioceptivos). Cuando estos receptores se estimulan transmiten su información al SNC a través de una serie de neuronas conectadas entre sí, llamadas de 1º, 2º y 3º orden. Las neuronas de primer orden son las que se encuentran en los ganglios raquídeos de la raíz posterior. Las neuronas de segundo orden se encuentran en la medula espinal o tronco cerebral y conducen los impulsos hasta el tálamo. Las neuronas de tercer orden se encuentran en el tálamo y transmiten los impulsos al área somatosensorial de la corteza cerebral.

Una vez las fibras sensitivas llegan a la médula espinal y ascienden a la corteza cerebral por dos vías generales: la vía cordonal posterior y la vía espinotalámica.

La vía cordonal posterior está formada por fibras sensitivas que transportan la sensibilidad propioceptiva, el tacto discriminativo y la esterognosia (reconocimiento de forma, textura y tamaño). Estas fibras después de entrar en la médula espinal por la raíz posterior se sitúan en los cordones posteriores (fascículos de Goll y Burdach), ascendiendo hasta el bulbo, donde hacen sinápsis con la neurona de segundo orden. El axón de la neurona de 2º orden cruza la línea media y alcanza el tálamo donde hace sinápsis con la neurona de 3º orden. Esta neurona transmite los impulsos sensoriales al área somatosensorial (circunvolución parietal ascendente).

La vía espinotalámica la forman fibras que transportan la sensibilidad termoalgésica y tacto no discriminativo. Estas fibras entran a la médula espinal por la raíz posterior, se sitúan en la sustancia gris medular dónde hacen sinápsis con la neurona de segundo orden. Los axones de estas neuronas cruzan hacia el lado opuesto y ascienden hasta el tálamo en los fascículos espinotalámicos. En el tálamo hacen sinápsis con la neurona de tercer orden, cuyo axón se proyecta al área somatosensorial de la corteza cerebral.

En el área somatosensorial las neuronas están situadas de forma ordenada de manera que cada región del cuerpo está representada en la corteza cerebral. Hay algunas partes corporales, por ejemplo, labios, cara, lengua y pulgar, que están representadas por áreas más grandes de la corteza somatosensorial El tamaño relativo de estas áreas es proporcional al número de receptores sensoriales en la parte corporal respectiva.

FISIOLOGÍA DEL MOVIMIENTO

La regulación de los movimientos corporales implica la participación de diversas regiones del encéfalo. Las áreas motoras de la corteza cerebral desempeñan una función importante en el inicio y control de los movimientos precisos. Los ganglios basales ayudan a establecer el tono muscular normal y a integrar los movimientos automáticos semivoluntarios, mientras que el cerebelo ayuda a la corteza y ganglios basales a lograr movimientos coordinados, además de facilitar el mantenimiento de la postura normal y el equilibrio. Hay dos tipos principales de vías motoras: las directas y las indirectas.

Vía motora directa o vía piramidal o vía corticoespinal

Las fibras se originan en las neuronas motoras del área motora primaria (primera neurona) y sus axones transportan impulsos nerviosos para los movimientos voluntarios de los músculos esqueléticos. Estos axones descienden por la cápsula interna (región de sustancia blanca situada entre los ganglios basales) hacia el tronco cerebral. En la parte anterior del bulbo el 90% de los axones presenta decusación al lado contralateral. De esta forma, la corteza motora del hemisferio derecho controla los músculos de la mitad corporal izquierda y viceversa. Los axones de la primera motoneurona terminan en núcleos de nervios craneales en el tronco del encéfalo o en el asta anterior medular (segunda motoneurona). Los axones de la segunda motoneurona transmiten los impulsos nerviosos hacia los músculos esqueléticos de la cara y cabeza (a través de los nervios craneales), tronco y extremidades (a través de los nervios espinales).

Vías motoras indirectas o extrapiramidales

Las vías extrapiramidales comprenden el resto de los fascículos motores somáticos. Los impulsos nerviosos se conducen por estas vías en circuitos polisinápticos complejos que abarcan corteza motora, ganglios basales, sistema límbico, tálamo, cerebelo, formación reticular y núcleos del tronco encefálico.

FISIOLOGÍA DE LOS REFLEJOS

Los reflejos son reacciones automáticas, previsibles y rápidas que se emiten en respuesta a los cambios en el medio.

médula espinal sustancia gris inteneurona

ganglio raquídeo

neurona sensitiva receptor de extensión rótula

tendón rotuliano

músculo cuádriceps (efector)

neurona motora

Fuente: Thibodeau GA, Patton KT. Anatomía y Fisiología 6a Ed. Madrid. Editorial Elsevier España, S.A 2007. p. 478

La trayectoria que recorren los impulsos nerviosos y que producen un reflejo constituye un arco reflejo, el cual está formado por:

1. Receptor sensorial, el extremo distal de una neurona sensorial u otra estructura asociada sirven como receptor sensorial y reacción ante un estímulo específico.

2. Neurona sensorial, la cual recibe y propaga los impulsos sensoriales hasta el extremo final de su axón situado en la sustancia gris medular o del tronco cerebral (reflejos craneales).

3. Centro de integración, formado por una o más regiones de sustancia gris dentro del SNC. En los reflejos más simples, este centro lo constituye una sola sinápsis entre la neurona sensitiva y motora.

4. Neurona motora, por la cual salen los estímulos producidos por los centros de integración hacia una parte corporal específica.

5. Efector, es la parte del organismo que responde al estímulo de la neurona motora. Cuando el efector es un músculo esquelético constituye un reflejo somático. Cuando el efector es un músculo liso o cardiaco o una glándula, entonces se trata de un reflejo visceral.

Algunos reflejos importantes son:

1. Reflejo miotático o de estiramiento muscular: en el interior de los músculos existe una zona llamada huso muscular, donde existen receptores que informan de los cambios de longitud del músculo. Si el músculo se estira, estimula los receptores del huso los cuales envían impulsos a la medula espinal a través de la raíz posterior. En la medula espinal la neurona sensorial produce una sinápsis con la neurona motora del asta anterior, la cual envía impulsos al músculo para que se contraiga y cese la extensión del músculo. Este arco reflejo funciona continuamente manteniendo un cierto grado de contracción muscular o tono muscular. De la misma forma que las fibras llegan a la medula, otras fibras que provienen del huso muscular ascenderán para informar a distintas áreas del encéfalo, las cuales enviarán órdenes a la médula espinal para regular el movimiento.

2. Reflejo de tensión: en el interior de los tendones musculares existen receptores de tensión (órgano tendinoso de Golgi), los cuales detectan los aumentos o descensos en la tensión del tendón debidos a estiramiento pasivo o contracción del músculo. Si la tensión del tendón aumenta debido a la contracción muscular se enviarán impulsos a la médula que inhibirán a las neuronas motoras para que el músculo no se contraiga más. De esta manera el reflejo de tensión protege el tendón y el músculo contra lesiones que pudiera ocasionar un exceso de tensión.

SENTIDOS ESPECIALES VISTA

El ojo humano está constituido por diversas estructuras situadas dentro y fuera de la cavidad orbitaria. La cavidad orbitaria u órbita es una cavidad ósea de forma piramidal con el vértice posterior, constituida por siete huesos del cráneo que contienen en su interior el globo ocular, y sus músculos, vasos y nervios.

1. Estructuras accesorias del ojo

Las estructuras accesorias del ojo son: párpados, pestañas, cejas, conjuntiva, músculos extrínsecos del ojo y aparato lagrimal.

1. Párpados: son dos pliegues cutáneos móviles que cierran por delante la cavidad orbitaria y protegen el globo ocular de la luz excesiva y cuerpos extraños. También cubren los ojos durante el sueño y ayudan a mantenerlo húmedo distribuyendo las lágrimas sobre los globos oculares. Externamente están cubiertos de una piel muy fina e internamente por una mucosa llamada conjuntiva. El esqueleto del párpado lo constituye una fina capa de tejido conjuntivo. En la cara interna de los párpados encontramos glándulas sebáceas o glándulas de Meibomio, cuya secreción impide que los párpados se adhieran unos a otros. El párpado superior, de mayor movilidad que el inferior, comprende en su porción superior el músculo elevador del párpado superior. En el borde de los párpados surgen unos pelos cortos que protegen de la entrada de cuerpos extraños (pestañas). Asimismo, por arriba del párpado superior, las cejas, en forma de arco, protegen al globo ocular contra cuerpos extraños y sudor.

2. Conjuntiva: es una mucosa que recubre la cara interna de los párpados y la parte anterior del globo ocular excepto la córnea. La conjuntiva se continúa con el epitelio que cubre la córnea. La conjuntiva es una cubierta protectora muy vascularizada compuesta por un epitelio cilíndrico estratificado con numerosas células caliciformes.

3. Aparato lagrimal: está formado por un grupo de estructuras que producen y drenan las lágrimas. Las glándulas lagrimales están situadas en el ángulo superoexterno de la órbita. Las lágrimas son una solución acuosa que contiene sales, moco y lisozima, una enzima protectora que destruye las bacterias. La secreción lagrimal la forman la secreción acuosa de las glándulas lagrimales, la secreción mucosa de la conjuntiva y la secreción sebácea de las glándulas sebáceas de los párpados. El movimiento de pestañeo de los párpados extiende de manera intermitente las lágrimas por el ojo y evita que se seque. Las lágrimas se recogen en el borde interno de los párpados donde se encuentra el saco lacrimal y de aquí, a través del conducto lacrimonasal, drenan en las fosas nasales, debajo del cornete nasal inferior.

4. Músculos extraoculares: son seis y permiten el movimiento del globo ocular en todas las direcciones. Están inervados por los pares craneales III, IV o VI. Dichos músculos son los rectos superior, inferior, externo e interno del ojo, y los oblicuos superior e inferior oculares.

2. Globo ocular

El globo ocular es el órgano de la visión. Está situado en la parte anterior de la órbita, rodeado por grasa periocular que lo protege. Está compuesto por tres capas concéntricas:

1. Capa fibrosa: Es la más externa. Está formada por tejido conectivo denso avascular y consta de dos regiones: esclerótica, posterior, y córnea, anterior:

• Esclerótica: forma las 5/6 partes posteriores del ojo. Es de color blanco, opaca, y se continúa por su parte posterior con la duramadre que cubre el nervio óptico. Es la capa más fuerte y protectora y representa el “esqueleto” del ojo.

• Córnea: ocupa la parte anterior del globo ocular. Es transparente y constituye la zona por dónde entra la luz al ojo.

2. Capa vascular o úvea. Es la capa intermedia vascular y pigmentada. Está formada por tres regiones diferentes: coroides, cuerpo ciliar e iris.

• Coroides: ocupa 5/6 partes posteriores de la úvea. Está situada entre la esclerótica y la retina. Su función básica es la nutrición de otras estructuras del globo ocular. Contiene pigmentos (melanocitos) que tienen como función la absorción de la luz por evitar la dispersión de la misma dentro del globo ocular.

• Cuerpo ciliar: por la parte anterior, la coroides tiene un engrosamiento circular que forma el cuerpo ciliar, el cual tiene unos procesos ciliares que sintetizan el humor acuoso y se unen con ligamentos al cristalino. El músculo ciliar es una banda circular de músculo liso que modifica la forma del cristalino interviniendo en la acomodación del cristalino a la visión cercana o distante.

• Iris: por delante del cuerpo ciliar, la coroides se adelgaza y forma el iris que presenta un agujero central, llamado pupila. El iris contiene

pigmentos que protegen el paso de la luz y el color de los ojos depende de su distribución. El iris contiene dos músculos, el músculo constrictor de la pupila (circular) inervado por el sistema nervioso parasimpático, y el músculo dilatador de la pupila (radial) inervado por el sistema nervioso simpático. Estos músculos modifican la medida de la pupila para regular la cantidad de luz que entra en el ojo. Es el diafragma del ojo.

3. Capa sensorial o retina: Es la capa más interna. Está formada por diez capas de células entre las que hay los receptores de la luz o fotoreceptors, los cuales transmiten la información visual al nervio óptico:

• Conos: receptores sobre todo de los colores y principales responsables de la capacidad de resolución de los objetos.

• Bastones: su principal función es la visión nocturna.

Si miramos desde la córnea el interior del ojo (fondo de ojo) observamos el color rosa/naranja de la coroides que se transparenta a través de la retina. En la parte posterior de la retina podemos distinguir una zona más pálida, la papila óptica o mancha ciega, que es el lugar por donde el nervio óptico sale del globo ocular. La papila contiene sólo fibras nerviosas y no tiene fotoreceptores y, por lo tanto, es insensible a la luz. Hay otra zona denominada fóvea central o màcula lútea o mancha amarilla, situada a unos 3 mm de la papila (más lateral) que corresponde a la zona de mayor agudeza visual, la cual sólo contiene conos.

Detrás del iris hay una lente biconvexa transparente avascular o cristalino, que es una estructura elástica, con una diámetro aproximado de 1cm unida al músculo ciliar a través de un ligamento. Su función es la acomodación, que consiste a variar la capacidad de refracción de la luz con el objetivo de poder enfocar en la retina. El cristalino divide el globo ocular en dos cavidades:

• Cavidad posterior o vítrea, que contiene humor vítreo, una sustancia transparente y gelatinosa que ocupa el espacio entre el cristalino y la retina.

• Cavidad anterior, que está ocupada por humor acuoso. El iris divide la cavidad anterior en dos cámaras:

o Cámara anterior, situada entre el iris y la córnea.

o Cámara posterior, situada entre el iris y el cristalino.

El humor acuoso se sintetiza en el cuerpo ciliar y pasa a la cámara anterior a través de la pupila. Se reabsorbe hacia la sangre venosa a través de unos espacios situados en el ángulo que forman el iris y la córnea. Proporciona nutrientes al cristalino y a la córnea, estructuras avasculares.

conducto lagrimal cristalino

pupila eje visual córnea

cámara anterior iris

pliegue lateral cuerpo ciliar retina

coroides esclerótica

cavidad posterior mácula lútea fóvea

arteria y vena central nervio óptico

disco óptico

Fuente: Thibodeau GA, Patton KT. Anatomía y Fisiología 6a Ed. Madrid. Editorial Elsevier España, S.A 2007.. p. 572

Fisiología de la visión: Para la correcta visión es preciso que la imagen que estamos mirando se refleje en la retina. Cuando los rayos luminosos pasan de un medio transparente, como la atmósfera, a otro translúcido como varias estructuras oculares, se desvían en el punto donde se unen los dos medios (refracción) La capacidad de refracción del ojo depende de diferentes estructuras oculares:

• La córnea tiene 2/3 de la capacidad de refracción

• El humor acuoso, vítreo y cristalino tiene el 1/3 restante, con la característica de que el cristalino puede modificar su capacidad de refracción (acomodación)

La llegada de la luz a la retina estimula los fotorreceptores (conos y bastones) generando impulsos nerviosos. Los conos y los bastones contienen un fotopigmento (rodopsina), el cual por acción de la luz se descompone en opsina (una proteína) y retinal (derivado de la vitamina A). Esta descomposición de la rodopsina genera un potencial que despolariza los conos y los bastones ocasionando impulsos visuales.

Estos impulsos nerviosos son transmitidos a través del nervio óptico hacia el quiasma óptico donde las fibras de los dos nervios se cruzan parcialmente. Se cruzan sólo las fibras que provienen de la retina nasal (que recogen los impulsos del campo visual temporal o externo). Las fibras de la retina temporal no se cruzan.

Desde el quiasma óptico las fibras van hacia el tálamo (formando las cintillas ópticas) y desde aquí al córtex occipital, área visual primaria.

AUDICIÓN Y EQUILIBRIO

El oído es el aparato de la audición y del equilibrio, y está constituido por un conjunto de órganos que tienen como finalidad la percepción de los sonidos, y contribuir al mantenimiento del equilibrio cinético y estático. Anatómicamente se compone de tres partes: oído externo, oído medio y oído interno.

El oído externo está constituido por las siguientes estructuras:

1. Pabellón auricular: es un pliegue cutáneo con esqueleto cartilaginoso con varias concavidades y eminencias que recoge los sonidos y los transmite hacia el conducto auditivo externo.

2. Conducto auditivo externo o CAE: es un conducto de esqueleto cartilaginoso y óseo que se dirige desde el pabellón auricular hasta el tímpano. El primer tercio externo del CAE está rodeado de cartílago y el resto se sitúa dentro del hueso temporal. Cerca de su abertura exterior, el CAE tiene pelos y glándulas ceruminosas que producen cerumen. El cerumen junto con los pelos evitan la entrada de polvo y cuerpos extraños en el oído.

El oído medio (también denominado caja del tímpano) es una cavidad pequeña en el interior del temporal. Está separado del oído externo por el tímpano o membrana timpánica, y del oído interno por la ventana oval. En su interior, unidos por ligamentos, están tres huesos, los huesecillos, conectados entre sí mediante articulaciones sinoviales.

1. Tímpano o membrana del tímpano es una membrana de tejido conjuntivo con fibras elásticas recubierta por epitelio por ambos lados. Es de color gris y de aspecto de nacarado. Su función es transformar las ondas sonoras del aire en vibraciones mecánicas que estimulan los huesecillos del oído.

2. Huesecillos: son tres y se denominan según su forma. El martillo está unido a la cara interna del tímpano y su cabeza se articula con el yunque. El yunque, es el hueso intermedio, se halla unido a la cabeza del estribo, cuya base se inserta en la ventana oval. El martillo está unido a un músculo que previene el daño en el oído interno al aumentar la tensión del tímpano ante ruidos muy fuertes. Los movimientos del tímpano se transmiten y amplifican a través de los huesecillos por el oído medio hasta el oído interno.

3. La pared anterior del oído medio se comunica con la nasofaringe a través de la

trompa de Eustaquio.

oído externo oído medio oído interno

nervio acústico (VIII) nervio vestibular nervio coclear

cadena de huesecillos

martillo yunque estribo

oreja (pabellón) hueso temporal

conducto auditivo externo membrana timpánica conductos semicirculares ventana oval

nervio fácil caracol vestíbulo ventana redonda

trompa de Eustaquio

Fuente: Thibodeau GA, Patton KT. Anatomía y Fisiología 6a Ed. Madrid. Editorial Elsevier España, S.A 2007.. p.565

El oído interno (también denominado laberinto) está formato por unas cavidades óseas (laberinto óseo) que en su interior tienen unos sacos membranosos llenos de líquido (laberinto membranoso). El laberinto óseo está dividido en tres áreas que reciben nombres de acuerdo con su forma: caracol o cóclea (anterior), vestíbulo (medio) y canales semicirculares (posterior). El laberinto membranoso está situado dentro del laberinto óseo y en general, sus conductos tienen la misma forma que el laberinto óseo. Entre el laberinto óseo y el membranoso hay un líquido llamado perilinfa. El interior del laberinto membranoso está también lleno de líquido denominado endolinfa.

1. El vestíbulo es la parte mediana del laberinto óseo. El laberinto membranoso a este nivel forma dos sacos, el utrículo y el sáculo. El utrículo es el más grande de los dos sacos del vestíbulo membranoso y en el cual confluyen los conductos semicirculares. Es un órgano que pertenece al sentido del equilibrio. El sáculo se comunica por la parte posterior con el utrículo y por la parte anterior con la parte membranosa del caracol.

2. Los canales semicirculares óseos están dispuestos siguiendo los tres planos del espacio. En el interior de los canales semicirculares se sitúan los conductos semicirculares membranosos, los cuales se comunican con el utrículo del vestíbulo. Cada conducto tiene una dilatación en su extremo, la ampolla, que contiene un área sensorial.

3. Por delante del vestíbulo se sitúa la cóclea o caracol óseo que recibe este nombre debido a que tiene la forma de la concha de un caracol. Una sección transversal de la cóclea nos muestra que está formado por tres canales o rampas, separadas entre sí por membranas:

• Rampa vestibular, que comunica con la ventana oval y es la más superior.

• Rampa timpánica, es la más inferior y se encuentra por debajo de la membrana basilar.

• Rampa mediana o coclear, separada por una fina membrana de la rampa vestibular y por la membrana basilar de la rampa timpánica. En el interior de la rampa mediana, por encima de la membrana basilar, se encuentra el órgano de Corti que contiene células ciliadas la cuales son los receptores para la audición. Por encima de los cilios existe una sustancia gelatinosa denominada membrana tectòria, que cuelga sobre las células ciliadas.

Las rampas vestibular y timpánica contienen perilinfa mientras que en el interior de la rampa coclear hay endolinfa.

Fisiología de la audición: Cuando se produce un sonido, las ondas sonoras penetran en el conducto auditivo externo con la ayuda del pabellón auricular. En el extremo interno del conducto chocan con la membrana timpánica y la hacen vibrar. De esta forma las ondas sonoras se transforman en vibraciones mecánicas. Estas vibraciones se transmiten a la cadena de huesecillos, dónde se amplifican, y se transmiten a la ventana oval. La ventana oval está en contacto, a través de una membrana, con la perilinfa de la rampa vestibular del caracol. Las vibraciones de la cadena de huesecillos provocan ondas en la perilinfa, las cuales hacen vibrar la membrana basilar. La vibración de la membrana basilar se transmite a la membrana tectórica ocasionando que los cilios del órgano de Corti se muevan y esto genera potenciales de acción en estas células ciliadas. Los impulsos nerviosos se transmiten a neuronas del ganglio coclear (situado dentro del oído interno) y, a través de la rama coclear del VIII par craneal, se transporta la información a núcleos del tronco, después a núcleos del tálamo y finalmente al córtex auditivo.

Fisiología del equilibrio: Los órganos sensoriales implicados en el equilibrio se localizan en el vestíbulo (sáculo y utrículo) y en los canales semicirculares.

El sáculo y el utrículo contienen células ciliadas que forman la mácula donde hay receptores sensitivos para el equilibrio estático o postural. Las células ciliadas maculares contactan con el movimiento con una capa gelatinosa que las recubre, la cual contiene como cristales en su interior, denominados otolitos. El cambio de posición de la cabeza genera potenciales de acción en las células ciliadas, las cuales se transmiten a través de la rama vestibular del VIII par craneal al encéfalo.

Los conductos semicirculares contienen células ciliadas sensoriales recubiertas por una estructura gelatinosa o cúpula. Las neuronas sensoriales de los conductos semicirculares membranosos detectan los movimientos de la rotación de la cabeza. El plano y el sentido de la rotación determinan cuál de los tres conductos es el más

estimulado y en qué dirección. Cuando se produce una rotación de la cabeza, la cúpula del conducto afectado se inclina hacia un lado y estimula los cilios. Esto genera potenciales de acción que estimulan el ganglio vestibular y, a través de la rama vestibular del VIII par craneal, los envía al encéfalo para informar del movimiento de la cabeza.

GUSTO

Los órganos sensoriales del gusto se encuentran, en su mayoría, en las papilas gustativas de la lengua. Los botones gustativos son quimioreceptores que se estimulan por las sustancias químicas disueltas en la saliva. Los botones gustativos están formados por receptores sensoriales rodeados por células de sostén. Los receptores gustativos tienen pequeños cilios que se proyectan en un poro bañado en saliva.

Los receptores sensoriales se estimulan, al menos en algún grado, por casi todas las sustancias químicas. Sin embargo, funcionalmente, cada botón gustativo está especializado en sólo uno de los cuatro sabores primarios: agrio, amargo, dulce y salado.

Los impulsos nerviosos generados por la estimulación de los receptores sensitivos, se transmiten a través del nervio facial (dos tercios anteriores de la lengua) y el nervio glosofaríngeo (tercio posterior de la lengua) al encéfalo.

OLFATO

El órgano sensorial del olfato consta de neuronas receptoras olfatorias situadas en la parte superior de la mucosa nasal. Estas neuronas poseen cilios olfatorios que se estimulan por las sustancias químicas disueltas en el moco que recubre el epitelio nasal.

Cuando los receptores sensoriales del epitelio olfatorio se estimulan, se genera un potencial de acción que viaja a través de los axones de las neuronas olfatorias. Estos axones entran al cráneo tras atravesar la lámina cribosa y hacer sinápsis con los nervios olfatorios del bulbo olfatorio para transportar los impulsos nerviosos hasta áreas especializadas del encéfalo.

...

Descargar como  txt (34.2 Kb)  
Leer 21 páginas más »
txt