ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fisica Mecánica


Enviado por   •  26 de Marzo de 2015  •  Trabajos  •  24.027 Palabras (97 Páginas)  •  168 Visitas

Página 1 de 97

FISICA

Mecánica

1 INTRODUCCIÓN

Mecánica, rama de la física que se ocupa del movimiento de los objetos y de su respuesta a las fuerzas. Las descripciones modernas del movimiento comienzan con una definición cuidadosa de magnitudes como el desplazamiento, el tiempo, la velocidad, la aceleración, la masa y la fuerza. Sin embargo, hasta hace unos 400 años el movimiento se explicaba desde un punto de vista muy distinto. Por ejemplo, los científicos razonaban —siguiendo las ideas del filósofo y científico griego Aristóteles— que una bala de cañón cae porque su posición natural está en el suelo; el Sol, la Luna y las estrellas describen círculos alrededor de la Tierra porque los cuerpos celestes se mueven por naturaleza en círculos perfectos.

El físico y astrónomo italiano Galileo reunió las ideas de otros grandes pensadores de su tiempo y empezó a analizar el movimiento a partir de la distancia recorrida desde un punto de partida y del tiempo transcurrido. Demostró que la velocidad de los objetos que caen aumenta continuamente durante su caída. Esta aceleración es la misma para objetos pesados o ligeros, siempre que no se tenga en cuenta la resistencia del aire (rozamiento). El matemático y físico británico Isaac Newton mejoró este análisis al definir la fuerza y la masa, y relacionarlas con la aceleración. Para los objetos que se desplazan a velocidades próximas a la velocidad de la luz, las leyes de Newton han sido sustituidas por la teoría de la relatividad de Albert Einstein. Para las partículas atómicas y subatómicas, las leyes de Newton han sido sustituidas por la teoría cuántica. Pero para los fenómenos de la vida diaria, las tres leyes del movimiento de Newton siguen siendo la piedra angular de la dinámica (el estudio de las causas del cambio en el movimiento).

2 CINEMÁTICA

La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la distancia recorrida dividida entre el intervalo de tiempo. La magnitud de la velocidad se denomina celeridad, y puede medirse en unidades como kilómetros por hora, metros por segundo, ... La aceleración se define como la tasa de variación de la velocidad: el cambio de la velocidad dividido entre el tiempo en que se produce. Por tanto, la aceleración tiene magnitud, dirección y sentido, y se mide en unidades del tipo metros por segundo cada segundo.

En cuanto al tamaño o peso del objeto en movimiento, no se presentan problemas matemáticos si el objeto es muy pequeño en relación con las distancias consideradas. Si el objeto es grande, se emplea un punto llamado centro de masas, cuyo movimiento puede considerarse característico de todo el objeto. Si el objeto gira, muchas veces conviene describir su rotación en torno a un eje que pasa por el centro de masas.

Existen varios tipos especiales de movimiento fáciles de describir. En primer lugar, aquél en el que la velocidad es constante. En el caso más sencillo, la velocidad podría ser nula, y la posición no cambiaría en el intervalo de tiempo considerado. Si la velocidad es constante, la velocidad media (o promedio) es igual a la velocidad en cualquier instante determinado. Si el tiempo t se mide con un reloj que se pone en marcha con t = 0, la distancia d recorrida a velocidad constante v será igual al producto de la velocidad por el tiempo:

d = vt

Otro tipo especial de movimiento es aquél en el que se mantiene constante la aceleración. Como la velocidad varía, hay que definir la velocidad instantánea, que es la velocidad en un instante determinado. En el caso de una aceleración a constante, considerando una velocidad inicial nula (v = 0 en t = 0), la velocidad instantánea transcurrido el tiempo t será

v = at

La distancia recorrida durante ese tiempo será

d = at2

Esta ecuación muestra una característica importante: la distancia depende del cuadrado del tiempo (t2, o “t al cuadrado”, es la forma breve de escribir t × t). Un objeto pesado que cae libremente (sin influencia de la fricción del aire) cerca de la superficie de la Tierra experimenta una aceleración constante. En este caso, la aceleración es aproximadamente de 9,8 m/s cada segundo. Al final del primer segundo, una pelota habría caído 4,9 m y tendría una velocidad de 9,8 m/s. Al final del siguiente segundo, la pelota habría caído 19,6 m y tendría una velocidad de 19,6 m/s.

El movimiento circular es otro tipo de movimiento sencillo. Si un objeto se mueve con celeridad constante pero la aceleración forma siempre un ángulo recto con su velocidad, se desplazará en un círculo. La aceleración está dirigida hacia el centro del círculo y se denomina aceleración normal o centrípeta (véase Fuerza centrípeta). En el caso de un objeto que se desplaza a velocidad v en un círculo de radio r, la aceleración centrípeta es a = v2/r. Otro tipo de movimiento sencillo que se observa frecuentemente es el de una pelota que se lanza al aire formando un ángulo con la horizontal. Debido a la gravedad, la pelota experimenta una aceleración constante dirigida hacia abajo que primero reduce la velocidad vertical hacia arriba que tenía al principio y después aumenta su velocidad hacia abajo mientras cae hacia el suelo. Entretanto, la componente horizontal de la velocidad inicial permanece constante (si se prescinde de la resistencia del aire), lo que hace que la pelota se desplace a velocidad constante en dirección horizontal hasta que alcanza el suelo. Las componentes vertical y horizontal del movimiento son independientes, y se pueden analizar por separado. La trayectoria de la pelota resulta ser una parábola. Véase Balística.

3 DINÁMICA

Para entender cómo y por qué se aceleran los objetos, hay que definir la fuerza y la masa. Puede medirse en función de uno de estos dos efectos: una fuerza puede deformar algo, como un muelle, o acelerar un objeto. El primer efecto puede utilizarse para calibrar la escala de un muelle, que a su vez puede emplearse para medir la magnitud de otras fuerzas: cuanto mayor sea la fuerza F, mayor será el alargamiento del muelle x. En muchos muelles, y dentro de un rango de fuerzas limitado, es proporcional a la fuerza:

F = kx

donde k es una constante que depende del material y dimensiones del muelle.

4 VECTORES

Si un objeto está en equilibrio,

...

Descargar como (para miembros actualizados)  txt (148.2 Kb)  
Leer 96 páginas más »
Disponible sólo en Clubensayos.com