ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Proyecto De Puentes Colgantes


Enviado por   •  1 de Diciembre de 2014  •  7.334 Palabras (30 Páginas)  •  748 Visitas

Página 1 de 30

1. ¿Cómo intervienen las fuerzas en la construcción de un puente colgante? equipo: • Pablo • Yuleni • Daniel • Zaira

2. ¿Que es un puente? • Construcción que permite salvar un accidente geográfico o cualquier otro obstáculo físico. • El diseño varía dependiendo de su función y la naturaleza del terreno sobre el que se construye.

3. Tipos de puentes Existen cinco tipos principales de puentes:  Puentes viga  En ménsula  En arco  Colgantes  Atirantados

4. Puente en viga  Puente cuyos vanos son soportados por vigas. Este tipo de puentes deriva directamente del puente tronco.  Se construyen con madera, acero u hormigón (armado, pretensado o pos tensado).  Se emplean vigas en forma de I, en forma de caja hueca.

5. Puente en mensula  Puente en el cual una o más vigas principales trabajan como ménsula o voladizo.  Puentes peatonales: pueden construirse con vigas simples, pero los puentes de mayor importancia se construyen con grandes estructuras reticuladas de acero o vigas tipo cajón de hormigón pos tensado, o mediante estructuras colgadas.

6. Puente en arco  Puente con apoyos a los extremos de la luz, entre los cuales se hace una estructura con forma de arco con la que se transmiten las cargas.  Trabajan transfiriendo el peso propio del puente y las sobrecargas de uso hacia los apoyos mediante la compresión del arco, donde se transforma en un empuje horizontal y una carga vertical.  La esbeltez del arco es alta, haciendo que los esfuerzos horizontales sean mucho mayores que los verticales.

7. Puente colgante  Puente sostenido por un arco invertido formado por numerosos cables de acero, del que se suspende el tablero del puente mediante tirantes verticales.  Este tipo de puentes son capaces en la actualidad de soportar el tráfico rodado e incluso líneas de ferrocarril ligeras.

8. Puente atirantado  Puente atirantado a aquel cuyo tablero está suspendido de uno o varios pilones centrales mediante obenques.  Los puentes atirantados tienen partes que trabajan a tracción y otras a compresión.  También hay variantes de estos puentes en que los tirantes van desde el tablero al pilar situado a un lado, y de ahí al suelo, o bien están unidos a un único pilar

9. ¿Qué fuerzas intervienen en su elaboración?  Fuerza de tracción  Fuerza de compresión  Fuerza gravitatoria  Fuerza cortante

10. Fuerza de tracción  Esfuerzo a que está sometido un cuerpo por la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo.  En un puente colgante la fuerza de tracción se localiza en los cables principales.  Un cuerpo sometido a un esfuerzo de tracción sufre deformaciones positivas (estiramientos) en ciertas direcciones por efecto de la tracción.

11. Fuerza de compresión  Resultante de las tensiones o presiones que existe dentro de un sólido deformable  Caracterizada porque tiende a una reducción de volumen o un acortamiento en determinada dirección.  La fuerza de compresión intenta comprimir un objeto en el sentido de la fuerza.

12. Fuerza gravitatoria  La fuerza gravitatoria disminuye con el cuadrado de la distancia, es decir que ante un aumento de la separación, el valor de la fuerza disminuye al cuadrado.

13. Fuerza cortante • Es la suma algebraica de todas las fuerzas externas perpendiculares al eje de la viga, que actúan a un lado de la sección considerada • La fuerza cortante es positiva cuando la parte situada a la izquierda de la sección tiende a subir con respecto a la parte derecha

14. ¿Que elementos componen al puente? Los puentes están construidos principalmente por 2 partes:  La superestructura o conjunto de tramos que salvan los vanos situados entre los soportes. Está formado por un tablero o piso, una o varias armaduras de apoyo y por las riostras laterales.

15.  La infraestructura formada por:  Las pilas. Son los apoyos intermedios de los puentes de dos o más tramos.  Los estribos situados en los extremos del puente sostienen los terraplenes que conducen al puente  Los cimientos o apoyos de estribos y pilas encargados de transmitir al terreno todos los esfuerzos. Están formados por las rocas, terreno o pilotes que soportan el peso de estribos y pilas.

16.  Cada tramo de un puente consta de: Una o varias armaduras de apoyo:  Placas, vigas y jabalcones, que transmiten las cargas mediante flexión o curvatura principalmente.  Cables, que las soportan por tensión.  Vigas de celosía, cuyos componentes las transmiten por tensión directa o por compresión.  Arcos y armaduras rígidas que lo hacen por flexión y compresión a un tiempo.

17.  Un tablero o piso: soporta directamente el tráfico y por medio de las armaduras transmite sus tensiones a estribos y pilas,  Está compuesto por:  Planchas  Vigas longitudinales o largueros sobre los que se apoya el piso  Vigas transversales que soportan a los largueros.  Tiene dos cables tensores de acero que sostienen la superficie transitable mediante tirantes verticales. Los cables tensores se apoyan en torres y se anclan a grandes bloques de hormigón ubicados en

18. ¿Cual es la funcion principal de los puentes?  Proteger obstáculos naturales, como valles, ríos, lagos o brazos de mar; y obstáculos artificiales, como vías férreas o carreteras, que nos permite pasar sobre el y con el fin de unir caminos.

19. ¿Por que no se caen los puentes?  Los cables que constituyen el arco invertido de los puentes colgantes deben estar anclados en cada extremo del puente son los encargados de transmitir una parte importante de la carga que tiene que soportar la estructura.  El tablero suele estar suspendido mediante tirantes verticales que conectan con dichos cables.

20.  Las fuerzas principales en un puente colgante son de tracción en los cables principales y de compresión en los pilares.  Todas las fuerzas en los pilares deben ser casi verticales y hacia abajo,

21. ¿Cual es la diferencia entre los puentes y los puentes colgantes?  Rigidez considerable o de perfiles aerodinámicos pueden ser necesarias para evitar la cubierta del puente vibrando bajo fuertes vientos.  La cubierta de la rigidez relativamente baja en comparación con otros tipos de puentes hace que sea más difícil de llevar ferrocarril de tráfico donde las altas cargas vivas se producen concentrados.

22. ¿Como se construye un puente colgante?  Primero se construyen las bases en ambos lados del cruce, el tipo de soporte depende del sistema a utilizar, en uno colgante , después de las cimentaciones y estructuras de soporte, se van tendiendo cables que van soportando los tramos de puente que se van construyendo mediante equipos deslizables, y así hasta juntar las secciones al centro del puente

Puente colgante

Puente 25 de Abril en Lisboa.

Golden Gate Bridge, uno de los más famosos, y récord de longitud del vano central durante muchos años. San Francisco (California)

Un puente colgante es un puente cuyo tablero, en vez de estar apoyado sobre pilas o arcos se sujeta mediante cables o piezas atirantadas desde una estructura a la que van sujetas. Una de sus variantes más conocidas es el que tiene una catenaria formada por numerosos cables de acero, de la que se suspende el tablero del puente mediante tirantes verticales. La catenaria cuelga de dos torres de suficiente altura, encargadas de llevar las cargas al suelo.

Desde la antigüedad este tipo de puentes han sido utilizados por la humanidad para salvar obstáculos. Con el paso de los siglos y la introducción y mejora de distintos materiales de construcción, este tipo de puentes son capaces en la actualidad de soportar el tráfico rodado o líneas de ferrocarril.

Índice

[ocultar]

• 1 Historia

• 2 Ventajas

• 3 Inconvenientes

• 4 Estructura y funcionamiento

• 5 Tipos de suspensión

• 6 Tipos de tableros en los puentes colgantes

• 7 Otras aplicaciones del tipo de estructura

• 8 Véase también

• 9 Enlaces externos

Historia[editar]

Véase también: Anexo:Puentes colgantes más largos del mundo

El diseño actual de los puentes colgantes fue desarrollado a principios del siglo XIX. Los primeros ejemplos incluyen el puente deMenai, el de Conwy, ambos puestos en funcionamiento en 1826 en el Norte del País de Gales, y el primer puente Hammersmith (1827) en la zona Oeste de Londres. El llamado Puente Colgante de Portugalete en Vizcaya, de 1893, es más exactamente un transbordador. Desde entonces se han construido puentes colgantes en todo el mundo. Esta tipología de puente es prácticamente la única solución posible para salvar grandes luces (superiores a un kilómetro), por ejemplo, cuando sea peligroso para el tráfico marítimo añadir apoyos centrales temporales o permanentes, o no sea viable añadir apoyos centrales.

En la actualidad, el puente de mayor vano es el de Gran Puente de Akashi Kaikyō, en Japón, y mide 1991 m. Hay un proyecto que estuvo a punto de iniciarse pero se pospuso, el Puente del estrecho de Mesina, que permitiría unir esa zona con un vano de más de tres kilómetros.

Ventajas[editar]

Puente Verrazano Narrows en NY, conocido por ser imagen de una compañía de seguros, además, sucedió al Golden Gate como puente con el mayor vano del mundo.

• La cantidad de material empleado en la construcción es mucho menor que la necesaria para un puente apoyado porque, para la misma carga, los materiales resisten mucho más a tracción que a compresión (a compresión requieren mayor sección para evitar el pandeo).

• El vano central puede ser muy largo en relación a la cantidad de material empleado, permitiendo atravesar cañones o vías de agua muy anchos.

• Pueden tener la plataforma a gran altura permitiendo el paso de barcos muy altos.

• No necesitan apoyos centrales durante su construcción, permitiendo construir sobre profundos cañones o cursos de agua muy ocupados por el tráfico marítimo o de aguas muy turbulentas.

• Siendo relativamente flexibles, pueden flexionar bajo vientos violentos y terremotos, donde un puente más rígido tendría que ser más grande y fuerte.

Inconvenientes[editar]

• Al faltar rigidez el puente se puede volver intransitable en condiciones de fuertes vientos o turbulencias, y requeriría cerrarlo temporalmente al tráfico. Esta falta de rigidez dificulta mucho el mantenimiento de vías ferroviarias.

• Bajo grandes cargas de viento, las torres ejercen un gran momento (fuerza en sentido curvo) en el suelo, y requieren una gran cimentación cuando se trabaja en suelos débiles, lo que resulta muy caro.

Estructura y funcionamiento[editar]

Ejemplo de puente atirantado

En el tipo más conocido de puente colgante, los cables que constituyen el arco invertido están anclados en cada extremo del puente a un elemento de soporte, comúnmente una torre, ya que son los encargados de transmitir una parte importante de la carga que tiene que soportar la estructura. El tablero suele estar suspendido mediante tirantes verticales sujetos a dichos cables. Las torres llevan las cargas al terreno firme.

Las fuerzas principales en un puente colgante son de tracción en los cables principales y de compresión en los pilares. Todas las fuerzas en los pilares o torres deben ser casi verticales y hacia abajo, y son estabilizadas por los cables principales, estos pueden ser muy delgados, como son, por ejemplo, en el Puente de Severn, Inglaterra.

Puente Juscelino Kubitschek, Brasilia,Brasil. Los arcos no se encuentran en el mismo plano y los cables de suspensión forman una superficie parabólica

Asumiendo como casi despreciable el peso del cable principal comparado con el peso de la pista y de los vehículos soportados, unos cables de un puente colgante formarán una parábola (muy similar a una catenaria, la forma de los cables principales sin cargar antes de que sea instalada la pista). Esto puede ser visto por un gradiente constante que crece con el aumento lineal de la distancia; este incremento en el gradiente a cada conexión con el tablero crea un aumento neto de la fuerza. Combinado con las cargas relativamente sencillas que da el tablero, esto hace que los puentes colgantes sean más simples de diseñar, calcular y analizar que los puentes atirantados, en los que el tablero está en compresión.

Otro tipo de puente colgante es el llamado atirantado, en el que los cables de suspensión parten directamente de las torres al tablero, sin cable en forma de catenaria.

También se hace puentes colgantes con un arco de sujeción al que van anclados los tirantes, como los casos del puente Juscelino Kubitschek de Brasilia o el tablero de inferior del puente Don Luis I en Oporto.

Tipos de suspensión[editar]

La suspensión en los puentes más antiguos se hizo con cadenas o barras enlazadas (ver: Puente de las Cadenas de Budapest), pero los puentes modernos tienen múltiples cables de acero. Esto es para mayor redundancia; unos pocos cables con defectos o fallos entre los cientos que forman el cable principal son una pequeña amenaza, mientras que un solo eslabón o barra malo o con defectos puede anular el margen de seguridad o echar abajo la estructura.

Puente Luis I en Oporto.

Un caso curioso es el Puente Don Luis I de Oporto (Portugal), que tiene dos tableros, soportados por un arco único, de estructura metálica: el tablero superior está apoyado en el arco y el inferior colgado del mismo, aunque no con cables, sino con estructura de piezas metálicas.

Tipos de tableros en los puentes colgantes[editar]

Puente colgante en Chiquitos, Bolivia

Obsérvese la delgadez del tablero de este puente sobre el Yangtze en China.

La mayoría de los puentes colgantes usan estructuras de acero reticuladas para soportar la carretera (en consideración a los efectos desfavorables que muestran los puentes con placas laterales verticales, como se vio en el desastre del puente de Tacoma Narrows) Recientes desarrollos en aerodinámica de puentes han permitido la reintroducción de estructuras laterales en la plataforma. En la ilustración de la derecha nótese la forma muy aguzada en el borde y la pendiente en la parte inferior del tablero. Esto posibilita la construcción de este tipo sin el peligro de que se generen remolinos de aire (cuando sopla el viento) que hagan retorcerse al puente como ocurrió con el puente de Tacoma Narrows.

Puentes colgantes más largos del mundo

El Gran Puente de Akashi Kaikyōtiene, desde el año 1991, el vano más largo del mundo.

Este artículo recoge, en forma de tabla, una lista de los puentes colgantes más largos del mundo y tiene como objetivo presentar lospuentes colgantes de todo el mundo según la longitud de su vano central (distancia media entre pilares, pilonas]] o soportes), la medida que se utiliza habitualmente para compararlos. El hecho de que el vano de un puente sea mayor no quiere decir que lo sea ni el puente ni tampoco la distancia entre orillas, aunque si está relacionada con la altura de las pilonas y con la complejidad de la obra de ingeniería.

La tabla recoge los 143 puentes colgantes, en septiembre de 2014, más largos del mundo (todos los que superan los 300 m de vano) y que son utilizados para el transporte de automóviles o de líneas de ferrocarril. Este listado no incluye puentes de otro tipo, como losatirantados, o con otras funciones, como los puentes de oleoductos o peatonales.

Los puentes colgantes tienen los tramos más largos de cualquier tipo de puente. Los puentes atirantados, el siguiente diseño más largo, son prácticos para tramos de hasta poco más de 1 kilómetro. Por eso los 20 puentes más largos de esta lista son en la actualidad los 20 más largos de todos los tipos de puentes vehiculares (excepto los puentes de pontones flotantes), ya que el puente atirantado más largo, finalizado en 2008, es el Puente Sutong (1088 m).

(Nota: Para conocer los puentes más largos, esto es, los puentes de más longitud con independencia del número de vanos y su forma estructural, véase Anexo:Puentes más largos del mundo; para los puentes atirantados: Anexo:Puentes atirantados más largos del mundo.)

Índice

[ocultar]

• 1 Tabla de puentes colgantes más largos

• 2 Véase también

• 3 Referencias

• 4 Enlaces externos

Tabla de puentes colgantes más largos[editar]

(Se sombrean en azul pálido aquellos puentes que fueron en su día los puentes más largos del mundo, recogiendo los años en que ostentaron tal condición. En la columna «puesto», se usa el signo igual («=») para ordenar los puentes que tienen la misma longitud. El «*» indica un número de orden repetido, aún pendiente de reordenar todo el ránking.)

Puentes colgantes más largos del mundo (vano de más de 300 m; actualizado, septiembre de 2014)

Imagen Puesto Nombre Localización País Luz (vano) (m) Longitud (m) Año servicio

001 Gran Puente de Akashi Kaikyō1

(puente colgante más largo entre 1998–presente) Kōbe − Awaji

Japón

1991 3911 1998

002 Puente Xihoumen2

Zhoushan

China

1650 5300 2008

003 Puente del Gran Belt3

Gran Belt

Dinamarca

1624 2694 1998

004 Puente Yi Sun-sin

Ciudad de Yeosu − Gwangyang

Corea del Sur

1535 2260 2010

005 Puente Runyang4

Zhenjiang − Yangzhou

China

1490 4888 2005

006 Cuarto Puente de Nankin5 •6

Nankin

China

1418 4888 2012

007 Puente Humber7

(puente colgante más largo entre 1981–1998)

Barton upon Humber − Hessle

Reino Unido

1410 5437 1981

008 Puente Jiangyin8

Jiangyin − Jingjiang

China

1385 4543 1999

009 Puente Tsing-Ma9

Tsing Yi − Ma Wan, Hong Kong

China

1377 2160 1997

010 Puente Hardanger10

Vallavik - Bu (Hordaland)

Noruega

1310 4298 2013

011 Puente Verrazano Narrows11

(puente colgante más largo entre 1964–1981)

Brooklyn − Staten Island, Nueva York

Estados Unidos

1298 1600 1964

012 Puente Golden Gate12

(puente colgante más largo entre 1937–1964)

San Francisco − Sausalito, California

Estados Unidos

1280 2737 1937

013 Puente Yangluo13

Wuhan

China

1280 4200 2007

014 Puente Höga Kusten14

Härnösand − Kramfors

Suecia

1210 1867 1997

015 Puente Aizhai15

Cerca de Aizhaizhen, Jishou (Hunan)

China

1176 3858 2012

016 Puente del Estrecho de Mackinac16

Mackinaw City − San Ignacio, Míchigan

Estados Unidos

1158 2626 1957

017 Puente Huangpu17

Guangzhou

China

1108 3365 2008

018 Puente Seto Minami Bisan (Gran Puente de Seto)18

Kōjima − Sakaide

Japón

1118 1648 1988

019 Puente Fatih Sultan Mehmet19

Estambul

Turquía

1090 1510 1988

020 Puente Balinghe20

Guanling, Guizhou

China

1088 2237 2009

021= Puente Taizhou (doble vano)21

Taizhou (Jiangsu)

China

1080

(x2) 3543

(x2) 2012

021= Puente Ma'anshan (doble vano)22

Ma'anshan (Anhui)

China

1080

(x2) 3543

(x2) 2013

023 Puente del Bósforo23

Estambul

Turquía

1074 1560 1973

024 Puente George Washington24

(puente colgante más largo entre 1931–1937)

Fort Lee, Nueva Jersey − Manhattan, Nueva York

Estados Unidos

1067 1451 1931

025 Tercer Puente Kurushima25

Onomichi − Imabari

Japón

1030 1570 1999

026 Segundo Puente Kurushima25

Onomichi − Imabari

Japón

1020 1515 1999

027 Puente 25 de Abril26

Lisboa − Almada

Portugal

1013 2277 1966

028 Puente Forth Road27

Fiordo de Forth

Reino Unido

1006 3300 1964

029 Puente Kita Bisan-Seto (Gran Puente de Seto)18

Kōjima − Sakaide

Japón

990 1538 1988

030 Puente Severn28

Canal de Bristol

Reino Unido

988 1597 1966

¿Cómo intervienen las fuerzas en la construcción de un puente colgante? (página 2)

Enviado por Mercedes!

________________________________________

________________________________________

Partes: 1, 2

Actualmente los puentes colgantes se utilizan casi exclusivamente para grandes luces; por ello, salvo raras excepciones, todos tienen tablero metálico.El puente colgante es, igual que el arco, una estructura que resiste gracias a su forma; en este caso salva una determinada luz mediante un mecanismo resistente que funciona exclusivamente a tracción, evitando gracias a su flexibilidad, que aparezcan flexiones en él.El cable es un elemento flexible, lo que quiere decir que no tiene rigidez y por tanto no resiste flexiones. Si se le aplica un sistema de fuerzas, tomará la forma necesaria para que en él sólo se produzcan esfuerzos axiles de tracción; si esto lo fuera posible no resistiría. Por tanto, la forma del cable coincidirá forzosamente con la línea generada por la trayectoria de una de las posibles composiciones del sistema de fuerzas que actúan sobre él. Esta línea es el funicular del sistema de cargas, que se define precisamente como la forma que toma un hilo flexible cuando se aplica sobre él un sistema de fuerzas. La curva del cable de un puente colgante es una combinación de la catenaria, porque el cable principal pesa, y de la parábola, porque también pesa el tablero; sin embargo la diferencia entre ambas curvas es mínima, y por ello en los cálculos generalmente se ha utilizado la parábola de segundo grado.El cable principal es el elemento básico de la estructura resistente del puente colgante. Su montaje debe salvar el vano entre las dos torres y para ello hay que tenderlo en el vacío. Esta fase es la más complicada de la construcción de los puentes colgantes.Inicialmente se montan unos cables auxiliares, que son los primeros que deben salvar la luz del puente y llegar de contrapeso a contrapeso.

La mayoría de los grandes puentes colgantes están situados sobre zonas navegables, y por ello permite pasar los cables iniciales con un remolcador; pero esto no es siempre posible.Como el sistema de cargas de los puentes es variable porque lo son las cargas de tráfico, los puentes colgantes en su esquema elemental son muy deformables. Este esquema elemental consiste en el cable principal, las péndolas, y un tablero sin rigidez, o lo que es lo mismo, con articulaciones en los puntos de unión con las péndolas. En la mayoría de los puentes colgantes, las péndolas que soportan el tablero son verticales.

El esquema clásico de los puentes colgantes admite pocas variaciones; los grandes se han hecho siempre con un cable principal en cada borde del tablero.

Las torres han sido siempre los elementos más difíciles de proyectar de los puentes colgantes, porque son los que permiten mayor libertad. Por eso en ellas se han dado toda clase de variantes. En los años 20 fueron adquiriendo ya una forma propia, no heredada, adecuada a su función y a su material; la mayoría tienen dos pilares con sección cajón de alma llena, unidos por riostras horizontales, o cruces de San Andrés.En los últimos puentes colgantes europeos construidos con torres metálicas, se ha utilizado un nuevo sistema de empalme de las chapas que forman los pilares verticales. En vez de utilizar uniones roblonadas o atornilladas mediante solape de chapas, como se hizo en los puentes americanos, las uniones se hacen a tope, rectificando mediante fresado el contacto de los distintos módulos que se van superponiendo, de forma que las compresiones se transmiten directamente de chapa a chapa; la unión entre ellas se hace mediante soldadura parcial de la junta. Así se han hecho las torres del puente Severn en Inglaterra y de los puentes del Bósforo en Estambul.Las torres no plantean problemas especiales de construcción, salvo la dificultad que supone elevar piezas o materiales a grandes alturas; las metálicas del puente Verrazano Narrows tienen una altura desde el nivel del mar de 210 m, y las de hormigón del puente Humber de 155 m.

Puente Humber.

Las torres de los puentes metálicos se montan generalmente mediante grúas trepadoras ancladas a ellas, que se van elevando a la vez que van subiendo las torres. Las de los puentes de hormigón se construyen mediante encofrados trepadores, como en el puente de Tancarville, o mediante encofrados deslizantes, como en el puente Humber.

El montaje del tablero se ha hecho en muchos de los grandes puentes colgantes por voladizos sucesivos, avanzando la ménsula desde una péndola a la siguiente, de la que se cuelga; el avance se hace simétricamente desde la torre hacia el centro del vano principal y hacia los extremos. Desde el propio tablero ya construido se van montando piezas más o menos grandes, elevándolas mediante grúas situados sobre él, hasta cerrar el tablero en el centro del vano. Así se construyó el puente George Washington, el Golden Gate y muchos de los puentes modernos japoneses.

Puente George Washington.

Puente Golden Gate

Otro sistema de montaje, que se ha utilizado en la mayoría de los últimos grandes puentes, y en todos los de sección en cajón, consiste en dividir el tablero en dovelas de sección completa que se llevan por flotación bajo su posición definitiva, y se elevan a ella desde los cables principales mediante cabrestantes; una vez situadas en su posición definitiva se cuelgan de las péndolas. La secuencia de montaje en este caso es generalmente el inverso del anterior; se empiezan a colgar las dovelas centrales, y se avanza simétricamente hasta llegar a las torres. Así se construyó el puente doble de la Bahía de San Francisco, el Bay Bridge, terminado en 1936; el puente Verrazano Narrows en Nueva York; y los modernos: puente sobre el río Severn en Inglaterra, los puentes sobre el B´sforo en Estambul, y el puente sobre el estuario del Humber en Inglaterra.

Puente Bay Bridge, en la Bahía de San Francisco.

El puente colgante es, de por sí, una estructura de poca rigidez que precisa de medidas especiales encaminadas a proporcionarle la resistencia conveniente a los tipos de cargas que más le afectan: el viento transversal y el ferrocarril, con sus pesadas cargas móviles concentradas. Para conseguir esta rigidez, el tablero ha de ser reforzado con grandes riostras en celosía, o estar formado por vigas cajón aerodinámicas, y mediante tableros de planchas soldadas a unas vigas cajón, combinación que proporciona la máxima rigidez con mínimo peso.

En este tipo de puentes el tablero cuelga mediante unos tirantes, sometidos a tracción, de cables sustentadores que, a su vez, son soportados por unas altas pilas y cuyos extremos se anclan en macizos de hormigón empotrados en el terreno. El tablero suele ser una viga metálica de celosía metálica, para que tenga la rigidez adecuada. Los cables metálicos adoptan la forma parabólica y son de gran flexibilidad, aunque sus diámetros alcanzan el metro. En el cálculo de estos puentes es esencial considerar el efecto del viento porque se trata de estructuras muy ligeras para las luces que salvan.

Son el tipo de puentes indicados para grandes luces, como en desembocaduras de ríos cuya navegabilidad quiera conservarse. La luz máxima alcanzada es de 1.298 m, en el Verrazano Bridge, en Nueva York; sin embargo, el puente colgante más largo del mundo es el Mackinac, también en Estados Unidos. En Europa, el mayor es el de Lisboa, sobre el río Tajo. El principio resistente del puente colgante está pensado para la estructura metálica, pero últimamente se ha aplicado el hormigón pretensado, como por ejemplo en el puente de Maracaibo, en Venezuela.

Puente Verrazano Bridge en Nueva York.

El puente más largo del mundo es el Mackinac y se encuentra en Estados Unidos.

El puente Lisboa es el más largo en Europa

Puente Maracaibo en Venezuela

Puentes

Los puentes suelen sustentar un camino, una carretera o una vía férrea, pero también pueden transportar tuberías y líneas de distribución de energía. Los que soportan un canal o conductos de agua se llaman acueductos. Los puentes construidos sobre terreno seco o en un valle y formados por un conjunto de tramos cortos se suelen llamar viaductos; se

llaman pasos elevados los puentes que cruzan las autopistas y las vías de tren. Un puente bajo, pavimentado, sobre aguas pantanosas o en una bahía y formado por muchos tramos cortos se suele llamar carretera elevada.

LOS PRIMEROS PUENTES

Es probable que los primeros puentes se realizaran colocando uno o más troncos para cruzar un arroyo o atando cuerdas y cables en valles estrechos. Este tipo de puentes todavía se utiliza. Los puentes de un tramo (llamamos tramo a la distancia entre dos apoyos) son un desarrollo de estas formas elementales. El método de colocar piedras para cruzar un río, mejorado con troncos situados entre las piedras para comunicarlas, es el prototipo de puente de múltiples tramos. Los postes de madera clavados en el fondo del río para servir de apoyo de troncos o vigas permitieron atravesar corrientes más anchas y caudalosas. Estos puentes, llamados de caballete, se utilizan todavía para atravesar valles y ríos en los que no interfieren con la navegación. El uso de pilas de piedra como apoyo para los troncos o maderos fue otro avance importante en la construcción de puentes con vigas de madera. La utilización de flotadores en lugar de apoyos fijos creó el puente de pontones. Los puentes de vigas de madera han sido los más utilizados desde la antigüedad, aunque según la tradición se construyó un puente de arco de ladrillos hacia el 1800 a.C. en Babilonia. Otros tipos de construcción, como los puentes colgantes y los cantilever, se han utilizado en la India, China y Tíbet. Los puentes de pontones los utilizaban los reyes persas Darío I y Jerjes I en sus expediciones militares.

¿Cómo intervienen las fuerzas en la construcción de un puente colgante?

• Fuerza de tracción

• Fuerza de compresión

• Fuerza gravitatoria

• Fuerza cortante

Fuerza de tracción

La fuerza de tracción es el esfuerzo a que está sometido un cuerpo por la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo.

En un puente colgante la fuerza de tracción se localiza en los cables principales.

Un cuerpo sometido a un esfuerzo de tracción sufre deformaciones positivas (estiramientos) en ciertas direcciones por efecto de la tracción.

La fuerza de tracción es la que intenta estirar un objeto (tira de sus extremos fuerza que soportan cables de acero en puentes colgantes, etc.)

El hecho de trabajar a tracción todos los componentes principales del puente colgante ha sido causa del escaso desarrollo que ha tenido este tipo de puente hasta el pasado siglo; así, ha permanecido en el estado primitivo que aun se encuentra en las zonas montañosas de Asia y América del Sur (simples pasarelas formadas por trenzados de fibras vegetales) hasta que se dispuso de materiales de suficiente resistencia y fiabilidad para sustituirlas.

Cada material posee cualidades propias que definen su comportamiento ante la tracción. Algunas de ellas son:

• elasticidad

• plasticidad

• ductilidad

• fragilidad

Ejemplo de fuerza de tracción:

Cuando te columpias, los tirantes de los que cuelga el asiento del columpio se encuentran bajo tensión. Por un lado reciben la fuerza de tu peso hacia abajo y por el otro, la fuerza hacia arriba de los goznes de los que cuelga el columpio. Pero a diferencia del caso de la silla, las dos fuerzas tienden a estirar los tirantes; a este tipo de fuerzas se les llama de tensión (también llamados de tracción.)

Fuerza de compresión

La fuerza de compresión es la resultante de las tensiones o presiones que existe dentro de un sólido deformable o medio continuo, caracterizada porque tiende a una reducción de volumen o un acortamiento en determinada dirección.

La fuerza de compresión es la contraria a la de tracción, intenta comprimir un objeto en el sentido de la fuerza.

La fuerza de compresión es un estado de tensión en el cual las partículas se aprietan entre sí. Una columna sobre la cual se apoya una carga, se halla sometida a una solicitación a la compresión.

Compresión es el estado de tensión en el cual las partículas se "aprietan" entre sí. Una columna sobre la cual se apoya un peso se halla sometido a compresión, por ese motivo su altura disminuye por efecto de la carga.

Las deformaciones provocadas por la compresión son de sentido contrario a las producidas por tracción, hay un acortamiento en la dirección de la aplicación de la carga y un ensanchamiento perpendicular a esta dirección, esto debido a que la cantidad de masa del cuerpo no varía. Las solicitaciones normales son aquellas fuerzas que actúan de forma perpendicular a la sección; por lo tanto, la compresión es una solicitación normal a la sección ya que en las estructuras de compresión dominante la forma de la estructura coincide con el camino de las cargas hacia los apoyos, de esta forma, las solicitaciones actúan de forma perpendicular provocando que las secciones tienden a acercarse y "apretarse".

Un ejemplo de fuerza de compresión es cuando te sientas en una silla, sus patas se encuentran bajo compresión. Por un lado reciben la fuerza de tu peso hacia abajo y por el otro, la fuerza hacia arriba. Estas dos fuerzas tienden a comprimir la pata de la silla. Normalmente las sillas se construyen con materiales que son muy resistentes a la compresión.

El hormigón es un material que resiste fuertemente a compresión, pero es muy frágil a esfuerzos de tracción.

Fuerza gravitatoria

La gravitación es la fuerza de atracción mutua que experimentan los cuerpos por el hecho de tener una masa determinada. La existencia de dicha fuerza fue establecida por el matemático y físico inglés Isaac Newton en el siglo XVII, quien, además, desarrolló para su formulación el llamado cálculo de fluxiones (lo que en la actualidad se conoce como cálculo integral).

Bien aplicando la Tercera Ley de Newton: (por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza igual pero de sentido opuesto sobre el cuerpo que la produjo. Dicho de otra forma: Las fuerzas siempre se presentan en pares de igual magnitud, sentido opuesto y están situadas sobre la misma recta.)

En un puente colgante deberá soportar el peso, a través de los cables, y habrá una tensión y deberá ser mayor del otro extremo, al del peso del puente en los anclajes (contraria sino el puente se va para abajo). El viento también se toma en cuenta.Si ya has visto fuerzas vectoriales, es ahí donde se aplican los principios básicos. Un ejemplo si no te hundes en el piso, es porque existe una fuerza de igual dirección y magnitud, pero de sentido contrario.

Las principales fuerzas son la carga que tiene que soportar el puente y el peso propio del puente (por supuesto ahí es donde interviene la gravedad).Después tienes la acción de los vientos, del agua si está construido sobre ella, etc.Digamos que el aspecto principal a tener en cuenta es que el puente debe soportar su propio peso y la carga transmitiéndolo a los cimientos a través de las columnas.

Se utilizan cables para soportar los tramos horizontales y de esta manera el peso es transmitido a la columna.La ley formulada por Newton y que recibe el nombre de ley de la gravitación universal, afirma que la fuerza de atracción que experimentan dos cuerpos dotados de masa es directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que los separa (ley de la inversa del cuadrado de la distancia). La ley incluye una constante de proporcionalidad (G) que recibe el nombre de constante de la gravitación universal y cuyo valor, determinado mediante experimentos muy precisos, es de:

Para determinar la intensidad del campo gravitatorio asociado a un cuerpo con un radio y una masa determinados, se establece la aceleración con la que cae un cuerpo de prueba (de radio y masa unidad) en el seno de dicho campo.

Mediante la aplicación de la segunda ley de Newton tomando los valores de la fuerza de la gravedad y una masa conocida, se puede obtener la aceleración de la gravedad.

Dicha aceleración tiene valores diferentes dependiendo del cuerpo sobre el que se mida; así, para la Tierra se considera un valor de 9,8 m/s² (que equivalen a 9,8 N/kg), mientras que el valor que se obtiene para la superficie de la Luna es de tan sólo 1,6 m/s², es decir, unas seis veces menor que el correspondiente a nuestro planeta, y en uno de los planetas gigantes del sistema solar, Júpiter, este valor sería de unos 24,9 m/s².En un sistema aislado formado por dos cuerpos, uno de los cuales gira alrededor del otro, teniendo el primero una masa mucho menor que el segundo y describiendo una órbita estable y circular en torno al cuerpo que ocupa el centro, la fuerza centrífuga tiene un valor igual al de la centrípeta debido a la existencia de la gravitación universal.A partir de consideraciones como ésta es posible deducir una de las leyes de Kepler (la tercera), que relaciona el radio de la órbita que describe un cuerpo alrededor de otro central, con el tiempo que tarda en barrer el área que dicha órbita encierra, y que afirma que el tiempo es proporcional a 3/2 del radio. Este resultado es de aplicación universal y se cumple asimismo para las órbitas elípticas, de las cuales la órbita circular es un caso particular en el que los semiejes mayor y menor son iguales.

Fuerza de cortante

La tensión cortante o tensión de corte es aquella que, fijado un plano, actúa tangente al mismo. Se suele representar con la letra griega tau En piezas prismáticas, las tensiones cortantes aparecen en caso de aplicación de un esfuerzo cortante o bien de un momento torsor

En piezas alargadas, como vigas y pilares, el plano de referencia suele ser un paralelo a la sección transversal (i. e., uno perpendicular al eje longitudinal). A diferencia del esfuerzo normal, es más difícil de apreciar en las vigas ya que su efecto es menos evidente.

Ejemplo de fuerzas cortantes:

Pensemos en el puente hecho con un tronco de árbol. Cuando te paras a la mitad de este puente, el tronco no se estira ni se comprime pero la fuerza de tu peso tiende a fracturarlo en su centro. La fuerza de tu peso y las que se generan en los dos puntos de apoyo del árbol sobre el suelo no están alineadas. A este tipo de fuerzas que actúan en los extremos del tronco y a la fuerza que se imprime en su parte central, se les llama cortantes, y la mayoría de los materiales son poco resistentes a ellas.

Puente simple

Los puentes más simples consisten en una trabe que descansa entre las dos orillas del claro que se desea cubrir.

Puede ser un simple tronco de árbol colocado entre las dos orillas de un río o un acantilado. Sin embargo, esta técnica está limitada por la resistencia del material y la longitud de las trabes.

El peso que soporta la trabe es transmitido al piso en los dos puntos sobre los que está apoyada. Los objetos que interactúan son la trabe, lo que soporta y la Tierra. Las fuerzas que intervienen son las generadas por la gravedad, es decir, el peso de todos los materiales que intervienen en la construcción del puente, y el de los objetos o personas que sostienen.

Historia

CARLOS MEDINA JAIMES

Puentes colgantes

Un puente colgante, es un puente sostenido por medio de un arco invertido formado por numerosos cables de acero, del que se suspende el tablero del puente mediante tirantes verticales.

El diseño actual de los puentes colgantes fue desarrollado a principios de siglo XIX. Los primeros ejemplos incluyen los puentes de Menai y Conwy (puestos en funcionamiento en 1826) en el Norte del País de Gales y el primer puente Hammersmith (1827) en la zona Oeste de Londres. Desde entonces puentes colgantes han sido construidos a lo largo de todo el mundo. Esta tipología de puente es prácticamente la única solución posible para salvar grandes luces (superiores a un kilómetro), por ejemplo, cuando sea peligroso para el tráfico marítimo añadir apoyos centrales temporales o permanentes, o no sea viable añadir apoyos centrales. En la actualidad, el puente de mayor vano es el de Gran Puente de Akashi Kaikyo, en Japón, y mide casi dos kilómetros. Hay un proyecto, el Puente del estrecho de Mesina, que permitiría unir esa zona, para ello contará con un vano de más de tres kilómetros, aunque este proyecto estaba a punto de iniciarse su construcción, se ha pospuesto.

Entre 1820 y 1826, Telford construyo un puente colgante sobre el Menai, en Inglaterra, salvando un vano de 177 m y utilizando como elementos de suspensión dos cadenas de eslabones de hierro forjado; cada uno de ellos fue probado antes de montarlo y fueron tendidas de una vez ambas cadenas, de las cuales se colgó el tablero. La falta de arrastramiento hizo que todo el puente debiera ser montado por dos veces antes de su total reconstrucción en 1940, pero de todos los primeros puentes colgantes del mundo es el que más años ha sobrevivido.

Las cadenas fueron sustituidas por cables por primera vez en un puente francés. La dificultad para conseguir cables de suficiente grosor y longitud que resistieran los enormes esfuerzos de tracción originados por las cargas en los grandes vanos fue resuelta por John Roebling, americano de origen alemán, quien inventó, en 1841, un procedimiento para formar in situ, a partir de la reunión de alambres paralelos, de hierros forjados, los cables que habían de soportar el puente del Grand Trun, de 250 m de vano, agües abajo de las cataratas de Niágara. Así se abrió el camino pare la construcción de puentes colgantes cada vez más largos, el cual culminó en el de Verrazano Narrows, a la entrada del puerto de Nueva York, sobre un vano de 1.298 m, el más largo de América, y el de Huber, Inglaterra, con un vano de 1.410 m de luz, el más largo de Europa. El puente colgante es, de por sí, una estructura de poca rigidez que precisa de medidas especiales encaminadas a proporcionarle la resistencia conveniente a los tipos de cargas que más le afectan: el viento transversal y el ferrocarril, con sus pesadas cargas móviles concentradas. Para conseguir esta rigidez, el tablero ha de ser reforzado con grandes riostras en celosía, o estar formado por vigas cajón aerodinámicas, y mediante tableros de planchas soldadas a unas vigas cajón, combinación que proporciona la máxima rigidez con mínimo peso.

PUENTES COLGANTES.

ORÍGENES.

• Primer puente colgante: Jacob´s Greek en 1801.

• Longitud del vano central: 21 m.

• Proyectista: James Finley.

• Primera patente sobre diseño de puentes colgantes en 1808.

• Propietario: James Finley.

• Primera publicación del modelo de un puente colgante en1810.

• Por: James Finley.

• Periódico: The Port Folio.

• Puente sobre el estrecho de Menai (U.K.) en 1826

• Longitud del vano central: 177 m.

• Proyectista: Thomas Telford.

• Puente sobre el valle de Sarine en Friburgo (Suiza) en 1834

• Longitud del vano central: 265 m.

• Proyectista: Joseph Chaley.

• Proyectista: Charles Ellet.

• Puente sobre el río Niágara (USA) en 1855.

• Longitud del vano central: 269 m.

• Proyectista: John Roebling.

• Puente de Brooklyn, NY City (USA) en 1883.

• Longitud del vano central: 523 m.

• Proyectista: John y Washington Roebling.

PUENTES COLGANTES.

JUVENTUD Y MADUREZ.

• Puente de St. Johns (Portland, USA) en 1931.

• Longitud del vano central: 396 m.

• Proyectista: David B. Steinman

• Puente George Washington: (New York, USA) en 1931.

• Longitud del vano central: 1067 m.

• Proyectista: O. H. Ammann

• Puente George Washington (cont.)

• Puente de George Washington (cont.)

• Puente de Verrazano, (N. York, USA) en 1964.

• Longitud del vano central: 1298 m.

• Proyectista: O. H. Ammann.

• Puente San Francisco-Oakland, (San Francisco, USA) en 1936.

• Longitud del vano central: 704 m.

• Proyectista: L. S. Moisseiff.

• Puente Golden Gate: (San Francisco, USA) en 1937.

• Longitud del vano central: 1280 m.

• Proyectista: J. B. Strauss.

• Puente Bronx-Whitestone, (N. Y. City, USA) en 1939.

• Longitud del vano central: 754 m.

• Proyectista: O. H. Ammann.

• Puente de Tacoma Narrows, (Tacoma, USA) en 1940.

Una de las construcciones más asombrosas que existe en el mundo son los Puentes Colgantes. Desde sus inicios siempre se pensó en esta tecnología como una alternativa para atravesar ríos o estrechos, y desde la tragedia del Tacoma Narrows se ha trabajado constantemente en aumentar la seguridad en este tipo de puentes. Los 5 puentes más grandes del mundo, en los cuales se ha hecho una gran obra de ingeniería y seguridad:

1. Akashi-Kaikyo, entre Kobe y Naruto Japón

Año de terminación: 1998

Longitud: 1991m

El puente de Akashi-Kaikyo es considerado el puente colgante más largo del mundo, su costo estimado es de 5 billones de dólares y circulan aproximadamente 23,000 vehículos por día.

2. Great Belt Bridge, entre Zealand y Funen Dinamarca

Año de terminación: 1998

Longitud: 1624m

El Great Belt Bridge (el gran cinturón), el segundo puente colgante más grande del mundo, fue construido para reemplazar el uso de Ferries para ir entre las islas de Zealand y Fulen en Dinamarca. Tiene un tráfico de 27,600 vehículos por día. Su costo estimado fue de 4.1 billones de dólares, siendo la obra más costosa que ha hecho Dinamarca en la historia.

3. Runyang Bridge, Jiangsu China

Año de terminación: 2005

Longitud: 1490m

El puente de Runyang en China, es el más grande que cruza el RíoYangTse y el puente colgante más largo de China. Terminado recientemente en el 2005, y superando el tercer puesto al Humber Bridge de Inglaterra

4. Humber Bridge, Kingston Inglaterra

Año de terminación: 1981

Longitud: 1410m

El Puente Humber de Inglaterra, cuando fue terminado en 1981 era el más grande del mundo, y así estuvo durante 17 años hasta la construcción de los anteriormente mencionados.

5. Jangyn, Río Yangtze China

Año de terminación: 1999

Longitud: 1385m

El puente Jangyn es el segundo puente más largo que cruza el río Yangtze de China. Se tiene muy poca información en línea sobre este puente, pero estadísticamente es el quinto más largo del mundo.

En la actualidad el puente colgante más famoso del mundo es el Golden Gate, es un estrecho situado en California occidental, a la entrada de la bahía de San Francisco, a la que separa del océano Pacífico. Tiene 7,9 km de largo. Técnicamente, la puerta está definida por los farallones de la península de San Francisco y la península de Marín , mientras que el «estrecho» es el agua que fluye en el medio.

El famoso puente de Golden Gate, con un ancho de 28 metros y 2,7 kilómetros de longitud, cruza desde 1937 el estrecho para unir San Francisco, al sur, con el condado de Marin, al norte. La construcción del puente comenzó el 5 de enero de 1933 bajo el programa Works Projects Administration (WPA), un programa de obras públicas iniciado por el gobierno de Franklin D. Roosevelt para crear empleos con fondos federales y disminuir los efectos de la Gran Depresión. El ingeniero jefe del proyecto fue Joseph Strauss. El puente se finalizó en abril de 1937 y fue abierto al tráfico peatonal el 27 de mayo a las 6:00 am, siendo inaugurado al abrirse al tráfico rodado al día siguiente 28 de mayo de 1937. La obra inicial costó 35 millones de dólares.

...

Descargar como  txt (46.5 Kb)  
Leer 29 páginas más »
txt