Tecnología / Metodos De Los Minimos Cuadrados

Metodos De Los Minimos Cuadrados

Informe de Libros: Metodos De Los Minimos Cuadrados
Ensayos de Calidad, Tareas, Monografias - busque más de 1.870.000+ documentos.

Enviado por:  cinthializbet  25 mayo 2013
Tags: 
Palabras: 2220   |   Páginas: 9
Views: 379

CATEDRA: ING. GESTION EMPRESARIAL

PROFESOR: RAMIREZ ZUÑIGA OSCAR ISMAEL

MATERIA: ESTADISTICA INFERENCIAL

TEMA: METODO DE LOS MINIMOS CUADRADOS

Introducción

3.2 Métodos de mínimos cuadrados

3.2.2 Ventajas

3.2.2.1 ejemplo

3.2.2 modelos clásicos

3.2.3 estimación de la tendencia

3.2.3.1ejemplo

3.2.4 estimación de la componente estacional

3.2.4.1 ejemplo

Conclusión

Bibliografía

2

3

3

5

13

13

14

14

15

20

20

INTRODUCCION

El método de los mininos cuadrados es una técnica de análisis que nos permitirá pronosticar las unidades de tiempo, la cual busca o intente encontrar alguna función, la cual debe de aproximarse a todos los datos. Esto quiere decir que se ajuste más hacia los puntos de dispersión y así minimizar los residuos entre estos puntos, lo cual deberíamos decir que nos va a proporcionar intervalos pequeños de error.

Con la ayuda de ejemplo se ira demostrando e ilustrando la forma de obtener esto, siendo así se aclararan dudas para realizar el método de los mínimos cuadrados.

Se mencionaran también los modelos clásicos. Que son el aditivo y multiplicativo, dado esto se mostraran los tipos de gráficos: tendencia, estacional, cíclica o negativa y de igual forma todo esto se explicara por medio de ejemplos.

METODO DE LOS MINIMOS CUADRADOS

Es una técnica de análisis numérico en la que, dados un conjunto de pares, se intenta encontrar la función que mejor se aproxime a los datos (un mejor ajuste).

En su forma simple, intenta minimizar la suma de los cuadrados de las diferencias ordenadas (llamadas residuos) entre los puntos generados por la función y los correspondientes en los datos.

VENTAJAS

 Es objetivo, solo depende de los resultados experimentales.

 Es reproducible, proporciona la misma ecuación, no importa quien realice el análisis.

 Proporciona una estimación probabilística de la ecuación que representa a

unos datos experimentales.

 Proporciona intervalos pequeños de error.

El procedimiento mas objetivo para ajustar una recta a un conjunto de datos presentados en

Un diagrama de dispersión se conoce como "el método de los mínimos cuadrados". La recta

Resultante presenta dos características importantes:

1. Es nula la suma de las desviaciones verticales de los puntos a partir de la recta de ajuste

∑ (Yー - Y) = 0.

2. Es mínima la suma de los cuadrados de dichas desviaciones. Ninguna otra recta daría

Una suma menor de las desviaciones elevadas al cuadrado ∑ (Yー - Y)² → 0

(Mínima).

El procedimiento consiste entonces en minimizar los residuos al cuadrado Ci²

Re emplazando nos queda

La obtención de los valores de a y b que minimizan esta función es un problema que se puede resolver recurriendo a la derivación parcial de la función en términos de a y b: llamemos G a la función que se va a minimizar:

Tomemos las derivadas parciales de G respecto de a y b que ...



Suscríbase a ClubEnsayos

Suscríbase a ClubEnsayos - busque más de 1.870.000+ documentos