ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Diferenciación y diferenciabilidad


Enviado por   •  24 de Septiembre de 2013  •  Ensayos  •  1.185 Palabras (5 Páginas)  •  239 Visitas

Página 1 de 5

Diferenciación y diferenciabilidad

Una función de una variable es diferenciable en un punto si su derivada existe en ese punto; una función es diferenciable en un intervalo si lo es en cada punto perteneciente al intervalo. Si una función no es continua en c, entonces no puede ser diferenciable en c; sin embargo, aunque una función sea continua en c, puede no ser diferenciable. Es decir, toda función diferenciable en un punto c es continua en c, pero no toda función continua en c es diferenciable en c (como f(x) = |x| es continua pero no diferenciable en x = 0).

Noción de derivada

Recta secante entre los puntos f(x+h) y f(x).

Las derivadas se definen tomando el límite de la pendiente de las rectas secantes conforme se van aproximando a la recta tangente.

Es difícil hallar directamente la pendiente de la recta tangente de una función porque sólo conocemos un punto de ésta, el punto donde ha de ser tangente a la función. Por ello, aproximaremos la recta tangente por rectas secantes. Cuando tomemos el límite de las pendientes de las secantes próximas, obtendremos la pendiente de la recta tangente.

Para obtener estas pendientes, tomemos un número arbitrariamente pequeño que llamaremos h. h representa una pequeña variación en x, y puede ser tanto positivo como negativo. La pendiente de la recta entre los puntos y es

Esta expresión es un cociente diferencial de Newton. La derivada de f en x es el límite del valor del cociente diferencial conforme las líneas secantes se acercan más a la tangente:

Si la derivada de f existe en cada punto x, podemos definir la derivada de f como la función cuyo valor en el punto x es la derivada de f en x.

Puesto que la inmediata sustitución de h por 0 da como resultado una división por cero, calcular la derivada directamente puede ser poco intuitivo. Una técnica es simplificar el numerador de modo que la h del denominador pueda ser cancelada. Esto resulta muy sencillo con funciones polinómicas, pero para la mayoría de las funciones resulta demasiado complicado. Afortunadamente, hay reglas generales que facilitan la diferenciación de la mayoría de las funciones descritas.

El cociente diferencial alternativo

La derivada de f(x) (tal como la definió Newton) se describió como el límite, conforme h se aproxima a cero. Una explicación alternativa de la derivada puede ser interpretada a partir del cociente de Newton. Si se utiliza la fórmula anterior, la derivada en c es igual al límite conforme h se aproxima a cero de [f(c + h) - f(c)] / h. Si se deja que h = x - c (por ende c + h = x), entonces x se aproxima a c (conforme h tiende a cero). Así, la derivada es igual al límite conforme x se aproxima a c, de [f(x) - f(c)] / (x - c). Esta definición se utiliza para una demostración parcial de la regla de la cadena.

Funciones de varias variables

Para funciones de varias variables las condiciones de diferenciabilidad son más estrictas y requieren más condiciones a parte de la existencia de derivadas parciales. En concreto se requiere la existencia de una aproximación lineal a la función en el entorno de un punto. Dada una base vectorial esta aproximación lineal viene dada por la matriz jacobiana:

Historia

Los problemas típicos que dieron origen al cálculo infinitesimal, comenzaron a plantearse en la época clásica de la antigua Grecia (siglo III a.c), con conceptos de tipo geométrico como el problema de la tangente a una curva de Apolonio

...

Descargar como (para miembros actualizados)  txt (7.1 Kb)  
Leer 4 páginas más »
Disponible sólo en Clubensayos.com