ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Lubricacion Y Lubricantes


Enviado por   •  7 de Octubre de 2013  •  2.506 Palabras (11 Páginas)  •  192 Visitas

Página 1 de 11

lubricación y lubricantes

El propósito de la lubricación es la separación de dos superficies con deslizamiento relativo entre sí de tal manera que no se produzca daño en ellas: se intenta con ello que el proceso de deslizamiento sea con el rozamiento más pequeño posible. Para conseguir esto se intenta, siempre que sea posible, que haya una película de lubricante de espesor suficiente entre las dos superficies en contacto para evitar el desgaste. Históricamente es interesante señalar que únicamente con la mejora de los procesos de fabricación de elementos metálicos (a partir de la revolución industrial) y el aumento de las velocidades de giro de ejes (por encima de las habituales de un carro o un molino) la lubricación hidrodinámica se convierte en el tipo normal de lubricación y empieza a ser estudiada. La lubricación con grasas (lubricación límite) recibió una atención especial desde hace ya muchos años. Un gran número de famosos investigadores realizó experimentos sobre lubricación: Leonardo da Vinci (1508), Amontons (1699), Euler (1748), Coulomb (1809). Amontons y Coulomb hallaron que la fuerza de fricción F que hay que vencer para mover un cuerpo respecto a otro es proporcional a la carga normal aplicada P: es decir existe una constancia del cociente P/F, llamado coeficiente de fricción.

Los primeros trabajos sobre un eje con cojinetes trabajando en condiciones hidrodinámicas fueron realizados por Pauli (1849) y Hirn (1854). Estos trabajos fueron analizados por el científico ruso Petroff en 1883. Tower entre 1883 y 1885 demostró que se generaban en este tipo de cojinetes unas presiones elevadas: este hecho fue explicado en 1886 por Reynolds que demostró que era necesaria una forma convergente en la película para que se generara un aumento de presión. Los experimentos de Tower resultaron claves en el desarrollo de esta teoría. Tower estaba encargado de estudiar la fricción en los soportes de los ejes de los carros de ferrocarril y de ver el mejor medio de lubricarlos. En el curso de una de sus investigaciones vio que uno de sus cojinetes parciales tenía un coeficiente de fricción muy bajo (4” de diámetro, 6” de longitud, arco de contacto 157º). Tower practicó un agujero en el apoyo tal como se ve en la figura y vio que la presión que se generaba al girar el eje era elevada. Esto le llevó a hacer un estudio de la distribución de presiones a lo ancho del cojinete.

Tipos de lubricación

Sistema a presión

Es el sistema de engrase más usado. El aceite llega impulsado por la bomba a todos los elementos, por medio de unos conductos, excepto al pie de biela, que segura su engrase por medio de un segmento, que tiene como misión raspar las paredes para que el aceite no pase a la parte superior del pistón y se queme con las explosiones.

Sistema a presión total

Es el sistema más perfeccionado. En él, el aceite llega a presión a todos los puntos de fricción (bancada, pie de biela, árbol de levas, eje de balancines) y de más trabajo del motor, por unos orificios que conectan con la bomba de aceite.

Sistema de Carter seco

Este sistema se emplea principalmente en motores de competición y aviación, son motores que cambian frecuentemente de posición y por este motivo el aceite no se encuentra siempre en un mismo sitio.

Consta de un depósito auxiliar D, donde se encuentra el aceite que envía una bomba B. Del depósito sale por acción de la bomba N, que lo envía a presión total a todos los órganos de los que rebosa y, que la bomba B vuelve a llevar a depósito D.

Para que la lubricación sea perfecta, en cualquier sistema empleado, el nivel de aceite ha de mantenerse en el depósito entre dos niveles, uno máximo y otro mínimo. Es preferible que el nivel se encuentre más próximo del valor máximo que del mínimo.

Bombas:

El aceite del engrase se mueve por una bomba, de la que hemos visto, se acciona por el árbol de levas. Se encuentra en el Carter, sumergida en el aceite que éste contiene.

Los tipos de bomba son:

* De engranajes.

* De paletas.

* De émbolo.

La bomba de engranajes

Consta de dos ruedas dentadas y encerradas en un Carter, una de ellas recibe el movimiento y lo transmite a la otra, haciendo pasar el aceite entre ellas y las paredes del Carter en el que están encerradas. Un conducto lo recoge y lo envía a los distintos órganos a engrasar.

De paletas

La bomba de paleteas consta de un Carter, dentro del cual gira una excéntrica, que arrastra dos paletas a las que un resorte mantiene unidas a la pared por sus extremos Cada paleta, en su giro, absorbe el aceite al girar por una cara y lo empuja por la otra, haciéndolo salir ya a presión a engrasar.

De émbolo

La bomba de émbolo está formada por un cilindro y un émbolo o pistón que se desliza dentro de él por la acción de una excéntrica cuando el pistón sube, una válvula permite el llenado del cilindro, al bajar el pistón, ésta se cierra y el aceite sale a presión por el conducto, que lo lleva a los distintos órganos.

Válvula reguladora:

Como sabemos, la bomba de engrase recibe el movimiento del árbol de levas y su velocidad de funcionamiento está e función de la velocidad de giro del motor. Si el motor gira deprisa, la bomba también, pudiendo producir una excesiva presión en el sistema de entrase, lo cual no sería conveniente. Para evitarlo se instala, a la salida de la bomba de engrase una válvula reguladora o de descarga, cuya misión es mantener la presión adecuada a las necesidades del motor. Si la bomba de engrase manda una excesiva cantidad de aceite al sistema de engrase, la válvula reguladora se abre y el aceite sobrante vuelve al Carter y, una vez establecida la presión deseada, se cierra.

Ventilación:

La ventilación consiste en sacar del cárter los vapores de aceite, gasolina y agua a medida que se vayan formando dentro del mismo la ventilación se consigue de la siguiente manera: Del aire que entra por el filtro general F para el carburador C, se deriva una parte por el tubo D al interior del cárter, lo ventila y pasa por el conducto T a la cámara de balancines B (a la ayuda a lubricar) y por S es aspirado por el carburador C.

Filtrado:

El aceite, después de engrasar los diferentes elementos del motor, puede arrastrar impurezas, que deben ser eliminadas antes de que vuelva a engrasar otra vez los elementos del motor, para ello se recurre a su filtrado.

El aceite se filtra antes de llagar a la bomba de engrase para que, una vez ésta lo mande a los distintos elementos y antes de llagar a ellos, pase por otro filtro constituido por una material textil poroso, donde quedan retenidas las impurezas.

Este filtro hay que cambiarlo cada cierto tiempo, pues las partículas en él depositadas pueden llegar a obstruirlo, lo cual hace que el aceite pase directamente a los elementos a engrasar lleno de impurezas.

Por barboteo o salpicadura.

Apenas si se usa hoy en día, pues resulta poco eficiente.

Este sistema dispone de una bomba, que remonta el aceita a una bandejas o pocillos en los que mantiene un determinado nivel y donde golpean unas cucharillas dispuesta en cada codo de cigüeñal con lo que se asegura su engrase. Al salpicar esparce el aceite de la bandeja en forma de niebla de aceite pulverizado, llegando así a todos los puntos que hayan de ser engrasados

Sistema mixto

En el sistema mixto se emplea el de barboteo y además la bomba envía el aceite a presión a las bancadas del cigüeñal.

Propiedades de los lubricantes

Refrigeración

Limpieza y protección

Estanqueidad

Reducción del frotamiento

Protección del aceite contra la oxidación

Papel de los aditivos detergentes dispersantes

Los aditivos contra la humedad y la corrosión

La disolución

Refrigeración

El aceite actúa como refrigerante en el motor, de forma complementaria a otros sistemas de enfriamiento (agua, radiador, bomba de agua y circuito de enfriamiento, sin olvidar el enfriamiento asegurado por el flujo continuado de aire que recorre las paredes del motor y el cárter de aceite). El calor generado en los pistones durante la combustión es transferido a las camisas del cilindro por medio de una capa lubricante que se encuentra en ella. El aceite que está en la zona del pistón es raspado y transmite calor.

Por ello, el aceite necesita resistir a temperaturas extremas. Es importante, por lo tanto, que el aceite tenga la viscosidad adecuada.

Estanqueidad

Es importante, ya que el aceite garantiza esta función. Su misión es cerrar ciertas partes del motor. Es fundamental que el pistón y la camisa del cilindro estén lo más estancas posible. Aunque los segmentos del pistón, en este caso, son los principales agentes de estanquización, estos no serán suficientes si el propio pistón y sus segmentos no son lubrificados convenientemente.

Reducción del frotamiento

Examinemos las propiedades lubricantes del aceite. Entendemos por lubricación el hecho de que el aceite mantenga, en principio, separadas las piezas móviles, impidiendo que éstas se toquen de forma directa.

El contacto entre dos piezas metálicas móviles aumenta el roce, genera calor y conlleva desgaste. La consecuencia final son un agarrotamiento y una completa deterioración del motor.

En sus comienzos, el aceite de motor que el automóvil poseía era un aceite mineral puro y sin ningún tipo de aditivos. Los motores han ido cambiando y con ello las exigencias de sus diversas piezas han ido en aumento. Como consecuencia los aceites también han tenido que mostrar un desempeño de extrema calidad.

Con el fin de evitar el problema del rozamiento, fueron creados aditivos químicos especiales que mezclados con el aceite, reforzaban la capa lubrificante.

Si colocamos una superficie metálica bastante bien pulida bajo un microscopio, nos damos cuenta que en realidad dicha superficie es rugosa y contiene picos y erupciones profundas. Si dos superficies similares se rozan una contra la otra, podemos imaginar los problemas que provienen de una acción de tipo "papel esmerilado".

Un aceite que permanece entre las superficies manteniendo alejadas las asperezas de las piezas en movimiento. Cuando las cosas funcionan como supuestamente deben funcionar y cuando los esfuerzos son moderados, los aditivos no sufren de manera tan intensa la influencia de las acciones que en ellos se proyectan.

Protección del aceite contra la oxidación

Un buen aceite debe en principio proteger todas las piezas del motor. Su función es evitar que este sufra corrosiones y que sea invadido por las impurezas, etc.

Uno de los factores potenciales de trastornos del motor son las altas temperaturas que en él se producen. Cuando la temperatura sube, las moléculas de aceite se mezclan con el aire y se oxidan como todas las demás materias. Cuanta más alta es la temperatura más rápido se produce la oxidación.

Se puede comparar la oxidación del aceite a la del hierro. Con el calor, este último se oxida, se forma la herrumbre y el hierro se deteriora y desaparece. Lo mismo ocurre con el aceite. Su viscosidad aumenta y se forman depósitos y ácidos.

Una molécula de aceite oxidado se va combinar con otras moléculas Provocando una reacción en cadena como muestra la figura. Para prevenir el comienzo de la oxidación empleamos los aditivos antioxidantes. Tienen la propiedad de combinarse con las moléculas oxidadas e impidiendo el contacto con las moléculas de aceite que no han sido afectadas, así lo muestra la figura abajo en la derecha.

Cuando un motor gira, hay numerosas combustiones pequeñas, independientes unas de otras.

Para que un vehículo realice una distancia de 1.500 kilómetros, su motor realizará en media 10 millones de combustiones. Cada una de ellas genera gases y residuos como el hollín. Con el polvo y la suciedad de la carretera, estas partículas ensuciarán el aceite.

Papel de los aditivos detergentes dispersantes

Un motor que gira también genera depósitos y residuos que formarán capas sobre los pistones y otras piezas que se encuentran en movimiento. El aceite debe actuar para que las partes vitales del motor se mantengan exentas de tales capas y depósitos. Hay otros aditivos que realizan esta tarea.

El aceite no solamente debe mantener limpio el interior del motor sino que también debe encargarse de que los elementos contaminantes sean inofensivos para él, impidiendo así, la aglomeración de partículas.

Las propiedades dispersantes del aceite, sumadas a los dispersantes que le son añadidos son capaces de distribuir los elementos contaminantes en el aceite impidiendo, de esta forma, que estas partículas se agrupen. Siendo dispersadas en el aceite de forma que son inofensivas.

Los aditivos contra la humedad y la corrosión

Cuando un litro de gasolina es sometido a combustión en un motor, químicamente se forma un litro de agua en forma de gas o de vapor. Si el motor no está lo suficientemente caliente, como por ejemplo en invierno en un corto trayecto, el vapor puede condensarse y transformarse en agua dentro del motor. Durante el invierno vemos con frecuencia el derrame de agua de los tubos de escape. Parte de esta agua puede entrar en el cárter y mezclarse con el aceite.

Lo mismo sucede con la humedad que entra, junto con el aire necesario para la combustión, en el motor. Cuando un litro de gasolina es sometido a combustión, 10.000 litro de aire pasan por el motor.

Por ello el aceite necesita aditivos que transformen el agua en un elemento inofensivo para el motor.

Durante la combustión se forman productos ácidos que habitualmente son evacuados con el gas de escape. Es un problema muy típico de los motores diesel pues este combustible contiene hasta el 0,05% de azufre. Dado que estos gases ácidos pueden infiltrarse en el cárter, el agua y el gas forman ácidos puros que provocarán una gran corrosión del motor.

Es importante que el aceite del motor contenga los aditivos adecuados, ofreciendo una reserva de alcalinidad para que todos los ácidos que se formen en el motor puedan ser neutralizados.

La disolución

Otro de los problemas que puede ocurrir es que en condiciones de bajas temperaturas, con trayectos cortos, se condense una pequeña parte del combustible. Este se ve forzado a bajar al cárter pudiendo causar daños al motor. La gasolina, que es un solvente, alterará el aceite al diluirlo. Hemos examinado los problemas que nuestro aceite debe combatir y de qué manera las condiciones de funcionamiento influyen en su calidad.

Las condiciones de funcionamiento son las que condicionarán los intervalos de los cambios de aceite.

CLASIFICACION DE LOS ACEITES PARA MOTOR

En el momento de seleccionar un lubricante para motor hay tres clasificaciones fundamentales a tener en cuenta: por viscosidad - SAE -, y por servicio - API y ACEA -.

Clasificación SAE: Los aceites para motor están agrupados en grados de viscosidad de acuerdo con la clasificación establecida por la SAE (Society of Automotive Engineers). Esta clasificación permite establecer con claridad y sencillez la viscosidad de los aceites, representando cada número SAE un rango de viscosidad expresada en cSt (centi-Stokes) y medida a 100oC, y también a bajas temperaturas (por debajo de 0oC) para los grados W (winter). En esta clasificación no interviene ninguna consideración de calidad, composición química o aditivación, sino que se basa exclusivamente en la viscosidad.

...

Descargar como  txt (15.3 Kb)  
Leer 10 páginas más »
txt