Leer Ensayo Completo Aislamiento Reproductivo Postcigotico

Aislamiento Reproductivo Postcigotico

Imprimir Documento!
Suscríbase a ClubEnsayos - busque más de 1.607.000+ documentos

Categoría: Temas Variados

Enviado por: monto2435 19 mayo 2011

Palabras: 4224 | Páginas: 17

...

, de modo que la fecundación no se lleva a cabo. Este mecanismo de aislamiento reproductivo es muy frecuente entre las Angiospermas y recibe el nombre de incompatibilidad cruzada o incongruencia. [33] [34] Existe una relación entre la autoincompatibilidad y el fenómeno de incompatibilidad cruzada. Así, en general, los cruzamientos entre individuos de una especie autocompatible (AC) con individuos de una especie autoincompatible (AI) dan descendencia híbrida. Por el contrario, el cruzamiento recíproco (o sea, AI x AC) no produce descendencia debido a que los tubos polínicos no logran llegar hasta los óvulos. Este fenómeno se conoce como incompatibilidad unilateral, el cual ocurre, además, cuando se cruzan dos especies AC o dos especies AI entre sí. [35]

En los arrecifes de coral, la incompatibilidad gamética impide la formación de numerosos híbridos interespecíficos.

-------------------------------------------------

2. 2. Mortalidad de los cigotos e inviabilidad de los híbridos

El óvulo es fecundado pero el cigoto no se desarrolla o bien se desarrolla y origina un individuo con menor viabilidad. [5] Tanto en plantas como en animales se han observado numerosos ejemplos de este tipo de incompatibilidad. Así, cuando se realizan cruzamientos entre especies del género Rana, se observan resultados muy dispares según las especies involucradas. En algunos cruzamientos no se observa segmentación del cigoto (es decir, la inviabilidad del híbrido es extrema y se produce desde la primera mitosis); en otros, se produce con normalidad la segmentación así como los estadios de blástula, pero falla la gastrulación. Finalmente, en otros cruzamientos, los estadios iniciales son normales pero ocurren fallos en las fases finales del desarrollo embrionario. Esto indica que estas especies se han diferenciado para los genes o complejos génicos que gobiernan el desarrollo embrionario y, tales diferencias determinan la inviabilidad de sus híbridos. [36] En los mosquitos del género Culex se obtuvieron resultados muy parecidos, pero las diferencias se producían entre los cruzamientos recíprocos, por lo que se concluyó que las mismas son el efecto de la interacción entre los genes del núcleo de las células (heredado de ambos padres) y los genes de las organelas citoplasmáticas (heredados solamente desde el progenitor femenino a través del citoplasma del óvulo). [5]

En las Angiospermas, el desarrollo exitoso del embrión depende del funcionamiento normal del endosperma con el que está asociado. [37] El colapso del desarrollo del endosperma y el subsecuente aborto embrionario ha sido observado en muchos cruzamientos interploides (es decir, los que se verifican entre poblaciones con distinto nivel de ploidía), intra o interespecíficos, [37] [38] [39] [40] [41] y en ciertos cruzamientos entre especies con el mismo nivel de ploidía. De hecho, el colapso del endosperma, y el subsecuente aborto del embrión híbrido, es el mecanismo de aislamiento reproductivo postfertilización más frecuente entre las angiospermas. [41] [42] [43]

-------------------------------------------------

2. 3. Esterilidad de los híbridos

Las mulas son híbridos interespecíficos estériles.

Un híbrido entre oso polar y oso pardo, Rothschild Museum, Tring.

El híbrido presenta una viabilidad normal pero es deficiente en cuanto a la reproducción o estéril. Esto queda bien demostrado en el caso de la mula y en el de muchos otros híbridos muy conocidos. La esterilidad puede deberse a la interacción entre los genes de las dos especies involucradas, a desequilibrios cromosómicos debido al diferente número cromosómico de las especies parentales, o bien a interacciones núcleo-citoplasmáticas como el caso de Culex descrito previamente. [5]

Burdéganos y mulas son los híbridos resultantes del cruzamiento entre un caballo y una asna o entre una yegua y un burro, respectivamente. Estos animales casi siempre son estériles debido a las diferencias en el número de cromosomas entre las especies parentales. Tanto los caballos como los burros pertenecen al género Equus, pero Equus caballus tiene 64 cromosomas mientras que Equus asinus tiene sólo 62. Esto hace que al combinarse individuos de ambas especies se originen crías (mula o burdégano) con 63 cromosomas, es decir, no forman pares; por lo que los cromosomas de una mula no se pueden dividir en forma equitativa durante la meiosis. La ausencia de una separación equitativa origina gametos cromosómicamente desbalanceados (con mayor o menor número de cromosomas), los cuales no son viables, lo que determina la esterilidad del individuo que los produce. La mula o el burdégano son animales creados por el hombre, ya que en estado natural las especies parentales se ignoran y no se aparean. De hecho, para obtener mulas o burdéganos es necesario entrenar a los progenitores para que acepten copular entre sí, o bien lograrlo mediante inseminación artificial. [5]

La esterilidad de muchos de los híbridos interespecíficos entre las angiospermas es un fenómeno ampliamente reconocido y estudiado. [44] Varias causas genéticas, genómicas y la interacción entre los factores nucleares y los citoplasmáticos pueden determinar la esterilidad en los híbridos interespecíficos en las plantas, como será descrito en la sección correspondiente. No obstante, es de destacar que -al contrario de lo que ocurre entre los animales- la hibridación en las plantas es un estímulo para la creación de nuevas especies. [45] Así, aunque el híbrido sea estéril, puede mantenerse en la naturaleza indefinidamente por medio de cualquier mecanismo de multiplicación asexual, ya sea por propagación vegetativa o por apomixis (es decir, reproducción asexual a través de semillas). [46] [47] Más aún, la hibridación interespecífica puede estar asociada con la poliploidía y, de ese modo, originar nuevas especies que se denominan alopoliploides (Rosa canina, por ejemplo, es el resultado de múltiples hibridaciones; [48] o el trigo que es una alohexaploide que presenta los genomas de tres especies diferentes). [49]

-------------------------------------------------

3. Mecanismos múltiples

En general, las barreras que separan a las especies no se hallan reducidas a un solo mecanismo. Las especies gemelas de Drosophila, D. pseudoobscura y D. persimilis, se hallan aisladas por el hábitat (persimilis generalente vive en regiones más frías y a mayores altitudes), por diferencias en el evento del cortejo (persimilis generalmente es más activa por la mañana, pseudoobscura por la noche) y por el comportamiento durante el apareamiento (las hembras de ambas especies prefieren los machos de su propia especie). De este modo, aunque las áreas de distribución de dichas especies se superpongan en amplias zonas del oeste de Estados Unidos, estos mecanismos de aislamiento resultan suficientes para mantener separadas a ambas especies. De hecho, solo han sido encontradas unas pocas hembras fecundadas por la otra especie entre miles que han sido analizadas. No obstante, aun en el caso de que se produzcan híbridos entre ambas especies, el flujo génico entre ambas continúa estando impedido ya que los machos híbridos son completamente estériles. Además, y en contraste con el gran vigor que exhiben estos machos estériles, los descendientes de las retrocruzas de las hembras híbridas con sus especies parentales son débiles y notoriamente inviables. Este último mecanismo restringe todavía más el intercambio genético entre estas dos especies de moscas en la naturaleza. [5]

-------------------------------------------------

4. El sexo de los híbridos: la Ley de Haldane

La ley de Haldane establece que cuando uno de los dos sexos está ausente en los híbridos interespecíficos entre dos especies determinadas, el sexo que no se obtiene, es raro o estéril, es el sexo heterogamético. [50] Por lo menos en mamíferos hay cada vez mayor evidencia que indica que esto se debe a las altas tasas de mutación de los genes determinantes de masculinidad en el cromosoma Y. [50] [51] [52] Se ha sugerido que la regla de Haldane simplemente obedece a que el sexo masculino es más sensible que el femenino cuando los genes determinantes del sexo están incluidos en un genoma híbrido. Pero también hay organismos en los que el sexo heterogamético es la hembra (aves, mariposas) y la regla sigue vigente en ellos. Luego no es un problema relacionado con el desarrollo sexual ni con los cromosomas sexuales. Haldane propuso que la estabilidad de desarrollo del individuo híbrido precisa de un complemento génico completo de cada especie parental, por lo que el híbrido del sexo heterogamético estaría desequilibrado (le falta al menos un cromosoma de una de las dos especies parentales). Por ejemplo, el macho híbrido obtenido al cruzar hembras de D. melanogaster con machos de D. simulans, que es inviable, carece del cromosoma X de D. simulans. [16]

-------------------------------------------------

5. Genética de las barreras de aislamiento reproductivo

-------------------------------------------------

5. 1. Mecanismos de aislamiento precopulatorio

En primer lugar se considerará la genética del aislamiento de tipo etológico. El aislamiento precopulatorio aparece cuando los genes necesarios para la reproducción sexual de una especie se diferencian de los genes equivalentes de la otra especie, de forma que puestos juntos un macho de la especie A con una hembra de la especie B no son capaces de copular. La genética de esta barrera reproductiva intenta identificar los genes que gobiernan distintas conductas sexuales en las dos especies. Los machos de Drosophila melanogaster y los de D. simulans dirigen a sus respectivas hembras un cortejo muy elaborado, aunque algo diferente, pero se ha visto que las diferencias entre especies son más de tipo cuantitativo que cualitativo. De hecho los machos simulans son capaces de hibridar con hembras melanogaster. Sin embargo, hay líneas de esta última especie que se cruzan fácilmente y otras que apenas lo hacen. Utilizando tal diferencia, se puede valorar el número mínimo de genes implicados en el aislamiento precopulatorio entre las especies melanogaster y simulans y su localización cromosómica. [16]

Así, fueron cruzadas moscas de una línea de D. melanogaster que hibrida fácilmente con simulans con otra línea que no lo hace, o lo hace escasamente. Las hembras de las poblaciones segregantes obtenidas a partir de este cruzamiento se pusieron junto a machos de simulans y se valoró el porcentaje de hibridación, que es una medida del grado de aislamiento reproductivo. Se concluyó a partir de este experimento que 3 de los 8 cromosomas del complemento haploide de D. melanogaster llevan al menos un gen que afecta al aislamiento, pues la sustitución de un cromosoma de una línea de bajo aislamiento por otra de alto aislamiento disminuye la frecuencia de hibridación. Además, se detectaron interacciones entre cromosomas, pues ciertas combinaciones de los mismos tienen un efecto multiplicativo. [16]

La incompatibilidad cruzada o incongruencia en plantas también está determinada por genes mayores que no están asociados al locus S de autoincompatibilidad. [53] [54] [55]

-------------------------------------------------

5. 2. Mecanismos de aislamiento posteriores a la cópula o a la fertilización

El aislamiento reproductivo entre especies aparece, en ciertos casos, mucho tiempo después de la fecundación y formación del cigoto, como ocurre -por ejemplo- con las especies gemelas Drosophila pavani y D. gaucha. Los híbridos entre ambas especies no son estériles, en el sentido que producen gametos (óvulos y espermatozoides) viables. No obstante, no pueden producir descendientes pues el esperma del macho híbrido no sobrevive en los receptáculos seminales de las hembras, ya sean híbridas o parentales. Del mismo modo, el esperma de los machos de las dos especies parentales no sobrevive en la tracto reproductivo de la hembra híbrida. [16] Este tipo de aislamiento postcopulatorio aparece en un gran número de especies como el sistema más eficaz para mantener el aislamiento reproductivo entre las mismas. [56]

De hecho, el desarrollo de un cigoto hasta un adulto es un proceso complejo y delicado de interacciones entre genes y medio ambiente que debe cumplirse con exactitud, y en el que cualquier alteración del proceso normal, causada por la ausencia de un gen necesario o por la presencia de uno extraño, puede detener el desarrollo normal provocando la inviabilidad del híbrido o su esterilidad. Se debe tener en cuenta que la mitad de los cromosomas y genes de un híbrido son de una especie y la otra mitad pertenecen a otra. Si las dos especies están genéticamente diferenciadas, las posibilidades de que los genes de ambas actúen armónicamente en el híbrido son escasas. Bajo esta perspectiva, serían necesarios pocos genes para originar un aislamiento postcopulatorio, a diferencia de lo que se describió previamente al considerar el aislamiento precopulatorio. [16] [57]

En muchas especies en las que el aislamiento reproductivo precopulatorio no existe, se producen híbridos pero los mismos son de un sólo sexo. Tal es el caso cuando se hibridan las hembras de Drosophila simulans con los machos de Drosophila melanogaster: las hembras híbridas mueren muy temprano en el desarrollo por lo que sólo se observan machos entre los descendientes. Sin embargo, se han hallado poblaciones de D. simulans con genes que permiten el desarrollo de hembras híbridas adultas; esto es, que "rescatan" la viabilidad de la hembra. Se supone que la actividad normal de estos genes de especiación es "inhibir" la expresión de genes que permiten el crecimiento del híbrido. Serían pues genes reguladores. [16]

Se han localizado varios de estos genes en el grupo de especies relacionadas con D. melanogaster. El primero en ser descubierto fue Lhr (del inglés Lethal hybrid rescue) localizado en el cromosoma 2 de D. simulans. Este alelo dominante permite el desarrollo de hembras híbridas procedentes del cruzamiento entre hembras simulans y machos melanogaster. [58] Otro gen diferente, también localizado en el cromosoma 2 de D. simulans, es Shfr (del inglés Simulans hybrid female rescue) que también permite el desarrollo de hembras híbridas, siendo su actividad dependiente de la temperatura en la que ocurre el desarrollo del embrión. [59] Otros genes similares han sido localizados en distintas poblaciones de las especies de este grupo. En definitiva, solo se necesitan pocos genes para que exista un efectivo aislamiento postcopulatorio mediado a través de la inviabilidad de los híbridos.

Tan importante como identificar un gen de aislamiento, es conocer su funcionamiento. El gen Hmr (del inglés Hybrid male rescue), ligado al cromosoma X e implicado en la viabilidad del macho híbrido entre D. melanogaster y D. simulans, es un gen de la familia de protooncogenes myb, que codifica un regulador transcripcional.[b] Dos variantes de este gen funcionan bien en cada especie por separado, pero en el híbrido no funcionan correctamente, posiblemente debido a los diferentes fondos genéticos propios de cada especie. El examen de la secuencia de los alelos en las dos especies muestra que las sustituciones de cambio de sentido son más abundantes que las sustituciones sinónimas, lo que sugiere que este gen ha estado sujeto a una intensa selección natural. [60]

El modelo de Dobzhansky-Müller propone que las incompatibilidades reproductivas entre especies están causadas por la interacción de genes de las respectivas especies. Se ha demostrado recientemente que Lhr ha divergido funcionalmente en D. simulans e interacciona con Hmr el cual, a su vez, ha divergido funcionalmente en D. melanogaster para causar la letalidad de los machos híbridos. Lhr se localiza en una región heterocromática del genoma y su secuencia ha divergido entre estas dos especies de un modo consistente con mecanismos de selección positiva. [61] Una cuestión importante y no dilucidada es si los genes que se detectan corresponden a genes antiguos que iniciaron la especiación favoreciendo la inviabilidad híbrida, o son genes modernos aparecidos con posterioridad por mutación, no compartidos por las diferentes poblaciones, y que suprimen el efecto de los primitivos genes de inviabilidad. El gen OdsH (del inglés Odysseus) causa esterilidad parcial en el híbrido entre Drosophila simulans y una especie muy cercana y derivada de ésta, D. mauritiana, solo encontrada en las islas Mauricio, y de origen muy reciente. Este gen muestra monofilia en ambas especies y también ha estado sujeto a selección natural. Se cree que es un gen que intervino en las primeras etapas de especiación, pues otros genes para los cuales difieren ambas especies muestran polifilia. Odsh se originó por duplicación en el genoma de Drosophila y ha evolucionado rápidamente en D. mauritania, mientras que su parálogo,[c] unc-4 (del inglés "uncoordinated-4"), es casi idéntico entre las especies del grupo melanogaster. [62] [63] [64] [65] Aparentemente, todos estos genes ilustran el modo de origen de los mecanismos de especiación en la naturaleza, por lo que se los denomina colectivamente como genes de especiación. Son secuencias génicas con una función normal dentro de las poblaciones de una especie pero que divergen rápidamente en respuesta a la selección positiva para que existan barreras de aislamiento reproductivo con otras especies. En general, además, todos estos genes tienen funciones en la regulación transcripcional de otros genes. [66]

Un último ejemplo de la evolución de genes implicados en el aislamiento postcopulatorio es el gen Nup96 (del inglés nucleoporin 96), que gobierna la producción de una de las aproximadamente 30 proteínas necesarias para formar un poro nuclear. En cada especie del grupo simulans de Drosophila, la proteína de este gen interactúa con la proteína de otro gen, aun desconocido, del cromosoma X para formar un poro funcional, pero en el híbrido el poro que se forma es defectuoso y determina la esterilidad. Las diferencias para las secuencias de Nup96 han estado sujetas a selección adaptativa, al igual que los otros ejemplos de genes de especiación previamente descritos. [67] [68]

El aislamiento postcopulatorio puede también surgir entre poblaciones diferenciadas cromosómicamente a causa de traslocaciones e inversiones. [69] Si, por ejemplo, una traslocación recíproca está fijada en una población, el híbrido producido entre esta población y la que no lleva la traslocación tendrá una meiosis compleja, con producción de gametos desequilibrados con cromosomas de más o de menos, y por lo tanto con una fertilidad reducida. En ciertos casos, existen traslocaciones complejas que involucran a más de dos cromosomas, con lo cual las meiosis de los híbridos son irregulares y su fertilidad nula o casi nula. [70] También las inversiones pueden originar gametos anormales en los individuos heterocigotos para las mismas, es decir, los híbridos, pero este efecto es poco importante comparado con las traslocaciones. [69] Un ejemplo de esterilidad en los híbridos debida a alteraciones cromosómicas proviene del estudio de las especies Drosophila nasuta y D. albomicans, dos especies gemelas de la región Indo-Pacífica. No existe aislamiento sexual entre ellas, y los híbridos F1 son fértiles. Pero la F2 tiene poca fertilidad, deja pocos descendientes y con una proporción de sexos alterada. El motivo es que el cromosoma X de albomicans está translocado y unido a un autosoma, lo que origina meiosis anormales en los híbridos. Las fusiones y fisiones cromosómicas robertsonianas son variaciones en el número de cromosomas que surgen por fusión de dos cromosomas acrocéntricos (los de un sólo brazo) en un sólo cromosoma de dos brazos -lo que determina una disminución del número haploide-, o por el contrario, por fisión de un cromosoma en dos cromosomas acrocéntricos, en este caso aumentando el número haploide. Si dos poblaciones difieren en el número de cromosomas, los híbridos entre ellas pueden experimentar una cierta pérdida de fertilidad, y por tanto inferior adaptación, al tener una meiosis irregular. [71]

<<Anterior Siguiente>>

La especie y los mecanismos de aislamiento reproductivo.

Aunque las especies son identificadas en la vida cotidiana por su apariencia, hay algo fundamental a tener en cuenta para su distinción: los individuos de una misma especie son capaces de cruzarse entre sí, pero no con individuos de otras especies diferentes.

Aunque el aislamiento reproductivo es un criterio claro para decidir si dos individuos pertenecen a la misma especie, se dan ambigüedades en la práctica por dos razones. La primera, es que veces no se sabe si individuos que viven en distintas regiones pertenecen a la misma especie, porque se desconoce si podrían cruzarse. La segunda razón se relaciona con el criterio de la evolución gradual: el origen de nuevas especies ocurre cuando dos poblaciones que antes pertenecían a la misma especie, divergen una de la otras y se convierten en dos especies diferentes; pero el proceso es gradual, y no hay un momento exacto en que se pueda decir que ambas poblaciones son ya dos especies diferentes. De este modo, se dan situaciones intermedias de divergencia.

El origen de una nueva especie implica la evolución de mecanismos o barreras biológicas que impidan el entrecruzamiento con individuos de otras especies. Las propiedades biológicas que impiden el apareamiento se llaman mecanismos de aislamiento reproductivo, y se pueden clasificar en dos grupos:

precigóticos, aquellos que impiden la fecundación del óvulo, y que pueden ser ecológicos, estacionales, conductuales, mecánicos y gaméticos;

postcigóticos, los que interfieren en el desarrollo del individuo o lo hacen estéril, de manera que no pueda dejar descendencia, pudiendo ser la inviabilidad y la esterilidad de los híbridos.

1. Aislamiento ecológico. A veces, individuos que ocupan el mismo territorio viven en diferentes hábitats y, por tanto, no tienen oportunidad de cruzarse. Por ejemplo, varias especies morfológicamente indistinguibles del mosquito Anopheles, que están aisladas por sus diferentes hábitats (aguas salobres, dulces y estancadas).

| |

2. Aislamiento estacional. Los organismos pueden madurar sexualmente en diferentes estaciones o horas del día.

3. Aislamiento conductual. La atracción entre machos y hembras, o entre gametos masculinos y femeninos, en el caso de plantas y organismos acuáticos, es necesaria para que se produzca la unión sexual.

Entre los animales es, quizá, el más poderoso. Por ejemplo, existen tres especies gemelas de Drosophila, casi indistinguibles morfológicamente (D. serrata, D. birchii y D. dominicana),nativas de Australia, Nueva Guinea y Nueva Bretaña, que en muchas regiones coexisten geográficamente. A pesar de su semejanza genética y proximidad evolutiva, no existen híbridos en la naturaleza.

La fuerza del aislamiento ecológico entre las especies gemelas ha sido comprobada en el laboratorio agrupando machos y hembras de diferentes especies.

4. Aislamiento mecánico. La cópula es a veces imposible entre individuos de diferentes especies, ya sea por el tamaño incompatible de sus genitales, o por variaciones en la estructura floral.

5. Aislamiento gamético. En los animales con fecundación interna los espermatozoides son inviables en los conductos sexuales de las hembras de diferentes especies. En las plantas, los granos de polen de una especie generalmente no pueden germinar en el estigma de otra.

6. Aislamiento postcigótico. Los MAR que actúan tras la formación del cigoto pueden ser clasificados en diferentes categorías: inviabilidad, esterilidad y reducción de ambas. Por ejemplo, los embriones de borrego y vaca mueren en estados incipientes de desarrollo. La inviabilidad de los híbridos es común en plantas, cuyas semillas híbridas no germinan.

Modelos de especiación.

Una especie está formada por grupos de organismos (poblaciones) que están reproductivamente aislados de individuos de otras especies. Por tanto, la cuestión del origen de las especies se centra en determinar cómo se genera el aislamiento reproductivo. Para ello, se han propuesto dos teorías:

La teoría incidental considera que dos poblaciones que están separadas divergen genéticamente como consecuencia de su adaptación al entorno local.

La teoría selectiva considera el aislamiento reproductivo como un producto directo de la selección. En el caso de que dos poblaciones estén ya genéticamente un tanto diferenciadas, los híbridos estarán menos adaptados que los no híbridos.

Las dos teoría anteriores no son necesariamente incompatibles. El aislamiento reproductivo puede aparecer como subproducto accidental de las barreras geográficas y de la adaptación a los medios diferentes. En otras ocasiones se requiere de una explicación por ambas teorías. El aislamiento reproductivos se inicia como consecuencia de la divergencia genética que tiene lugar en poblaciones geográficamente separadas; pero es completado por la selección natural una vez que surge de nuevo la oportunidad de apareamiento, cuando los híbridos tienen baja eficacia biológica.

La ausencia de flujo genético hace posible que las dos poblaciones se diferencien genéticamente como consecuencia de la adaptación y de la deriva genética.

El patrón más común de especiación se conoce como especiación geográfica o especiación alopátrica. La primera etapa se inicia como resultado de la separación geográfica de poblaciones. Si la separación continúa durante algún tiempo, aparecerán mecanismos de aislamiento reproductivo postcigóticos, como resultado de la divergencia genética entre las dos poblaciones. La segunda etapa comienza cuando se presenta la oportunidad para el cruzamiento debido a un cese del aislamiento geográfico. Si la eficacia de los híbridos es suficientemente reducida, la selección natural promoverá el desarrollo de mecanismos de aislamiento reproductivo precigóticos y las dos poblaciones pueden evolucionar hasta convertirse en especies diferentes. |