Leer Ensayo Completo Conceptos Básicos De Biología

Conceptos Básicos De Biología

Imprimir Documento!
Suscríbase a ClubEnsayos - busque más de 1.939.000+ documentos

Categoría: Ciencia

Enviado por: Rimma 10 abril 2011

Palabras: 30516 | Páginas: 123

...

ara la ciencia moderna fue el descubrimiento de los mecanismos de la herencia. Otro gran progreso de la biología molecular ha sido el avance en las investigaciones acerca del metabolismo celular, es decir, de cómo las moléculas procesan la energía necesaria para la vida.

La biología celular está estrechamente ligada a la biología molecular. Para comprender las funciones de la célula, unidad estructural básica de la materia viva, los biólogos celulares estudian sus componentes a nivel molecular. En 1838, el botánico alemán Matthias Schleiden propuso que la célula constituía la unidad estructural común de los seres vivos. Un año más tarde, el también alemán Theodor Schwann hizo extensiva esta teoría celular a los animales, sentando las bases que marcarían el desarrollo de la citología y la histología.

La biología de los organismos se relaciona con la biología celular, ya que las funciones vitales de los organismos multicelulares están gobernadas por las acciones e interacciones de sus componentes celulares. Su estudio abarca el crecimiento y desarrollo (biología del desarrollo) y su funcionamiento (fisiología). Las investigaciones sobre el cerebro y el sistema nervioso (neurofisiología) y sobre el comportamiento animal (etología) son especialmente importantes.

APLICACIONES EN DIFERENTES ESFERAS DEL CONOCIMIENTO.

En estrecha relación con estas ciencias se hallan las investigaciones sobre el comportamiento animal que se centran en la contribución de la genética a las relaciones sociales entre poblaciones animales; Sociobiología, campo científico en desarrollo que investiga las bases biológicas de las conductas sociales de los animales como la agresión, la territorialidad, los sistemas sociales y la elección de pareja. La sociobiología intenta ampliar el concepto de selección natural a los sistemas sociales y a la conducta social de los animales, incluidos los seres humanos. Los sociobiólogos piensan que los patrones de conducta con los que se nace se modifican, e incluso, desaparecen en el transcurso del proceso de selección natural.

La biología también incluye el estudio de los humanos en el ámbito molecular, celular y de organismos. Si su objetivo es la aplicación de los conocimientos biológicos a la salud, el estudio se denomina biomedicina. Las poblaciones humanas no se consideran dentro del campo de estudio de la biología, sino que son el objetivo de la antropología y de otras ciencias sociales. Los límites y las subdivisiones de la biología son tan variables hoy en día como lo han sido siempre, y cabe esperar aún más modificaciones.

Las poblaciones son analizadas mediante parámetros como la variabilidad, la densidad y la estabilidad, teniendo en cuenta los procesos ambientales y las circunstancias que influyen en dichos parámetros. Entre las características determinantes de una población se encuentran: las tasas de natalidad y mortandad, la distribución por edades y sexos, conductas de competitividad y cooperación, relaciones interespecíficas como la de depredador-presa o la de parásito-huésped, provisión de alimento y otras consideraciones ambientales y pautas migratorias. La biología de poblaciones intenta desarrollar modelos matemáticos para el análisis de una población o de un grupo, incorporando el mayor número posible de variables y parámetros. Estos modelos permiten predecir cuales serán los efectos que producirá, sobre el conjunto de la población, un cambio en alguna de las variables.

3. EL METODO CIENTÍFICO Y LA BIOLOGÍA

IMPORTANCIA DEL METODO CIENTIFICO

Método científico, método de estudio sistemático de la naturaleza que incluye las técnicas de observación, reglas para el razonamiento y la predicción, ideas sobre la experimentación planificada y los modos de comunicar los resultados experimentales y teóricos.

La ciencia suele definirse por la forma de investigar más que por el objeto de investigación, de manera que los procesos científicos son esencialmente iguales en todas las ciencias de la naturaleza; por ello la comunidad científica está de acuerdo en cuanto al lenguaje en que se expresan los problemas científicos, la forma de recoger y analizar datos, el uso de un estilo propio de lógica y la utilización de teorías y modelos. Etapas como realizar observaciones y experimentos, formular hipótesis, extraer resultados y analizarlos e interpretarlos van a ser características de cualquier investigación.

ETAPAS DEL METODO CIENTIFICO

En el método científico la observación consiste en el estudio de un fenómeno que se produce en sus condiciones naturales. La observación debe ser cuidadosa, exhaustiva y exacta.

A partir de la observación surge el planteamiento del problema que se va a estudiar, lo que lleva a emitir alguna hipótesis o suposición provisional de la que se intenta extraer una consecuencia. Existen ciertas pautas que han demostrado ser de utilidad en el establecimiento de las hipótesis y de los resultados que se basan en ellas; estas pautas son: probar primero las hipótesis más simples, no considerar una hipótesis como totalmente cierta y realizar pruebas experimentales independientes antes de aceptar un único resultado experimental importante.

La experimentación consiste en el estudio de un fenómeno, reproducido generalmente en un laboratorio, en las condiciones particulares de estudio que interesan, eliminando o introduciendo aquellas variables que puedan influir en él. Se entiende por variable todo aquello que pueda causar cambios en los resultados de un experimento y se distingue entre variable independiente, dependiente y controlada.

Variable independiente es aquélla que el experimentador modifica a voluntad para averiguar si sus modificaciones provocan o no cambios en las otras variables. Variable dependiente es la que toma valores diferentes en función de las modificaciones que sufre la variable independiente. Variable controlada es la que se mantiene constante durante todo el experimento.

En un experimento siempre existe un control o un testigo, que es una parte del mismo no sometida a modificaciones y que se utiliza para comprobar los cambios que se producen. Todo experimento debe ser reproducible, es decir, debe estar planteado y descrito de forma que pueda repetirlo cualquier experimentador que disponga del material adecuado.

Los resultados de un experimento pueden describirse mediante tablas, gráficos y ecuaciones de manera que puedan ser analizados con facilidad y permitan encontrar relaciones entre ellos que confirmen o no las hipótesis emitidas.

Una hipótesis confirmada se puede transformar en una ley científica que establezca una relación entre dos o más variables, y al estudiar un conjunto de leyes se pueden hallar algunas regularidades entre ellas que den lugar a unos principios generales con los cuales se constituya una teoría.

Según algunos investigadores, el método científico es el modo de llegar a elaborar teorías, entendiendo éstas como configuración de leyes. Mediante la inducción se obtiene una ley a partir de las observaciones y medidas de los fenómenos naturales, y mediante la deducción se obtienen consecuencias lógicas de una teoría. Por esto, para que una teoría científica sea admisible debe relacionar de manera razonable muchos hechos en apariencia independientes en una estructura mental coherente. Así mismo debe permitir hacer predicciones de nuevas relaciones y fenómenos que se puedan comprobar experimentalmente.

Las leyes y las teorías encierran a menudo una pretensión realista que conlleva la noción de modelo; éste es una abstracción mental que se utiliza para poder explicar algunos fenómenos y para reconstruir por aproximación los rasgos del objeto considerado en la investigación.

4. LA BIOLOGIA Y EL MICROSCOPIO

IMPORTANCIA DEL MICROSCOPIO

Microscopio, cualquiera de los distintos tipos de instrumentos que se utilizan para obtener una imagen aumentada de objetos minúsculos o detalles muy pequeños de los mismos.

PRINCIPIOS Y FUNCIONAMIENTO DE LOS MICROSCOPIOS ÓPTICOS Y COMPUESTOS.

El tipo de microscopio más utilizado es el microscopio óptico, que se sirve de la luz visible para crear una imagen aumentada del objeto. El microscopio óptico más simple es la lente convexa doble con una distancia focal corta. Estas lentes pueden aumentar un objeto hasta 15 veces. Por lo general, se utilizan microscopios compuestos, que disponen de varias lentes con las que se consiguen aumentos mayores. Algunos microscopios ópticos pueden aumentar un objeto por encima de las 2.000 veces.

El microscopio compuesto consiste en dos sistemas de lentes, el objetivo y el ocular, montados en extremos opuestos de un tubo cerrado. El objetivo está compuesto de varias lentes que crean una imagen real aumentada del objeto examinado. Las lentes de los microscopios están dispuestas de forma que el objetivo se encuentre en el punto focal del ocular. Cuando se mira a través del ocular se ve una imagen virtual aumentada de la imagen real. El aumento total del microscopio depende de las distancias focales de los dos sistemas de lentes.

[pic]

Microscopio compuesto

Dos lentes convexas bastan para construir un microscopio. Cada lente hace converger los rayos luminosos que la atraviesan. Una de ellas, llamada objetivo, se sitúa cerca del objeto que se quiere estudiar. El objetivo forma una imagen real aumentada e invertida. Se dice que la imagen es real porque los rayos luminosos pasan realmente por el lugar de la imagen. La imagen es observada por la segunda lente, llamada ocular, que actúa sencillamene como una lupa. El ocular está situado de modo que no forma una segunda imagen real, sino que hace diverger los rayos luminosos, que al entrar en el ojo del observador parecen proceder de una gran imagen invertida situada más allá del objetivo. Como los rayos luminosos no pasan realmente por ese lugar, se dice que la imagen es virtual.

El equipamiento adicional de un microscopio consta de un armazón con un soporte que sostiene el material examinado y de un mecanismo que permite acercar y alejar el tubo para enfocar la muestra. Los especímenes o muestras que se examinan con un microscopio son transparentes y se observan con una luz que los atraviesa; se suelen colocar sobre un rectángulo fino de vidrio. El soporte tiene un orificio por el que pasa la luz. Bajo el soporte se encuentra un espejo que refleja la luz para que atraviese el espécimen. El microscopio puede contar con una fuente de luz eléctrica que dirige la luz a través de la muestra.

La fotomicrografía, que consiste en fotografiar objetos a través de un microscopio, utiliza una cámara montada por encima del ocular del microscopio. La cámara suele carecer de objetivo, ya que el microscopio actúa como tal. El término microfotografía, utilizado a veces en lugar de fotomicrografía, se refiere a una técnica de duplicación y reducción de fotografías y documentos a un tamaño minúsculo para guardarlos en un archivo.

Los microscopios que se utilizan en entornos científicos cuentan con varias mejoras que permiten un estudio integral del espécimen. Dado que la imagen de la muestra está ampliada muchas veces e invertida, es difícil moverla de forma manual. Por ello los soportes de los microscopios científicos de alta potencia están montados en una plataforma que se puede mover con tornillos micrométricos. Algunos microscopios cuentan con soportes giratorios. Todos los microscopios de investigación cuentan con tres o más objetivos montados en un cabezal móvil que permite variar la potencia de aumento.

Hay diversos microscopios ópticos para funciones especiales. Uno de ellos es el microscopio estereoscópico, que no es sino un par de microscopios de baja potencia colocados de forma que convergen en el espécimen. Estos instrumentos producen una imagen tridimensional.

El microscopio de luz ultravioleta utiliza el rango ultravioleta del espectro luminoso en lugar del rango visible, bien para aumentar la resolución con una longitud de onda menor o para mejorar el detalle absorbiendo selectivamente distintas longitudes de onda de la banda ultravioleta. Dado que el vidrio no transmite las longitudes de onda más cortas de la luz ultravioleta, los elementos ópticos de estos microscopios están hechos con cuarzo, fluorita o sistemas de espejos aluminizados. Además, dado que la radiación ultravioleta es invisible, la imagen se muestra con fosforescencia (véase Luminiscencia), en fotografía o con un escáner electrónico. El microscopio de luz ultravioleta se utiliza en la investigación científica.

El microscopio petrográfico o de polarización se utiliza para identificar y estimar cuantitativamente los componentes minerales de las rocas ígneas y las rocas metamórficas. Cuenta con un prisma de Nicol u otro tipo de dispositivo para polarizar la luz que pasa a través del espécimen examinado (véase Óptica: Polarización de la luz). Otro prisma de Nicol o analizador determina la polarización de la luz que ha pasado a través del espécimen. El microscopio tiene un soporte giratorio que indica el cambio de polarización acusado por el espécimen.

El microscopio en campo oscuro utiliza una luz muy intensa en forma de un cono hueco concentrado sobre el espécimen. El campo de visión del objetivo se encuentra en la zona hueca del cono de luz y sólo recoge la luz que se refleja en el objeto. Por ello, las porciones claras del espécimen aparecen como un fondo oscuro y los objetos minúsculos que se están analizando aparecen como una luz brillante sobre el fondo. Esta forma de iluminación se utiliza para analizar elementos biológicos transparentes y sin manchas, invisibles con iluminación normal.

El microscopio de fase ilumina el espécimen con un cono hueco de luz, como en el microscopio en campo oscuro. Sin embargo, en el microscopio de fase el cono de luz es más estrecho y entra en el campo de visión del objetivo, que contiene un dispositivo en forma de anillo que reduce la intensidad de la luz y provoca un cambio de fase de un cuarto de la longitud de onda. Este tipo de iluminación provoca variaciones minúsculas en el índice de refracción de un espécimen transparente, haciéndolo visible. Este tipo de microscopio es muy útil a la hora de examinar tejidos vivos, por lo que se utiliza con frecuencia en biología y medicina.

Entre los microscopios avanzados se encuentra el microscopio de campo cercano, con el que se pueden ver detalles algo menores a la longitud de onda de la luz. Se hace pasar un haz de luz a través de un orificio diminuto y se proyecta a través del espécimen a una distancia equivalente a la mitad del diámetro del orificio, formando una imagen completa.

La potencia amplificadora de un microscopio óptico está limitada por la longitud de onda de la luz visible. El microscopio electrónico utiliza electrones para iluminar un objeto. Dado que los electrones tienen una longitud de onda mucho menor que la de la luz, pueden mostrar estructuras mucho más pequeñas. La longitud de onda más corta de la luz visible es de alrededor de 4.000 angstroms (1 ángstrom equivale a 0,0000000001 metros). La longitud de onda de los electrones que se utilizan en los microscopios electrónicos es de alrededor de 0,5 angstroms.

Todos los microscopios electrónicos cuentan con varios elementos básicos. Disponen de un cañón de electrones que emite los electrones que chocan contra el espécimen, creando una imagen aumentada. Se utilizan lentes magnéticas para crear campos que dirigen y enfocan el haz de electrones, ya que las lentes convencionales utilizadas en los microscopios ópticos no funcionan con los electrones. El sistema de vacío es una parte relevante del microscopio electrónico. Los electrones pueden ser desviados por las moléculas del aire, de forma que tiene que hacerse un vacío casi total en el interior de un microscopio de estas características. Por último, todos los microscopios electrónicos cuentan con un sistema que registra o muestra la imagen que producen los electrones.

Hay dos tipos básicos de microscopios electrónicos: el microscopio electrónico de transmisión (Transmission Electron Microscope, TEM) y el microscopio electrónico de barrido (Scanning Electron Microscope, SEM). Un TEM dirige el haz de electrones hacia el objeto que se desea aumentar. Una parte de los electrones rebotan o son absorbidos por el objeto y otros lo atraviesan formando una imagen aumentada del espécimen. Para utilizar un TEM debe cortarse la muestra en capas finas, no mayores de un par de miles de angstroms. Se coloca una placa fotográfica o una pantalla fluorescente detrás del objeto para registrar la imagen aumentada. Los microscopios electrónicos de transmisión pueden aumentar un objeto hasta un millón de veces.

Un microscopio electrónico de barrido crea una imagen ampliada de la superficie de un objeto. No es necesario cortar el objeto en capas para observarlo con un SEM, sino que puede colocarse en el microscopio con muy pocos preparativos. El SEM explora la superficie de la imagen punto por punto, al contrario que el TEM, que examina una gran parte de la muestra cada vez. Su funcionamiento se basa en recorrer la muestra con un haz muy concentrado de electrones, de forma parecida al barrido de un haz de electrones por la pantalla de una televisión. Los electrones del haz pueden dispersarse al alcanzar la muestra o provocar la aparición de electrones secundarios. Los electrones dispersados y los secundarios son recogidos y contados por un dispositivo electrónico situado a los lados del espécimen. Cada punto leído de la muestra corresponde a un píxel en un monitor de televisión. Cuanto mayor sea el número de electrones contados por el dispositivo, mayor será el brillo del píxel en la pantalla. A medida que el haz de electrones barre la muestra, se presenta toda la imagen de la misma en el monitor. Los microscopios electrónicos de barrido pueden ampliar los objetos 100.000 veces o más. Este tipo de microscopio es muy útil porque, al contrario que los TEM o los microscopios ópticos, produce imágenes tridimensionales realistas de la superficie del objeto.

Se han desarrollado otros tipos de microscopios electrónicos. Un microscopio electrónico de barrido y transmisión (Scanning Transmission Electron Microscope, STEM) combina los elementos de un SEM y un TEM, y puede mostrar los átomos individuales de un objeto. El microanalizador de sonda de electrones, un microscopio electrónico que cuenta con un analizador de espectro de rayos X, puede analizar los rayos X de alta energía que produce el objeto al ser bombardeado con electrones. Dado que la identidad de los diferentes átomos y moléculas de un material se puede conocer utilizando sus emisiones de rayos X, los analizadores de sonda de electrones no sólo proporcionan una imagen ampliada de la muestra, como hace un microscopio electrónico, sino que suministra también información sobre la composición química del material.

5. ORIGEN DEL UNIVERSO

TEORIA FISICO-QUIMICA

[pic]

Nacimiento de las fuerzas fundamentales

Un segundo después del Big Bang ya habían surgido cuatro fuerzas que aún gobiernan el Universo. Estas fuerzas son la gravitación, el electromagnetismo y las interacciones nucleares débil y fuerte. El Universo empezó en un estado de densidad y temperatura inconcebiblemente elevadas, y es muy probable que entonces existiera una única fuerza. A medida que el Universo se expandía y enfriaba, esa fuerza dio lugar a la gravedad, que afecta a todas las partículas, y a una ‘gran fuerza unificada’. Después de la era inflacionaria, en la que el Universo multiplicó repetidamente su tamaño a un ritmo fabuloso, la gran fuerza unificada originó la interacción nuclear fuerte que conocemos actualmente, y que es la responsable de mantener unidos los núcleos atómicos, y la fuerza electrodébil, una combinación de electromagnetismo e interacción nuclear débil. Cuando el Universo tenía aproximadamente 10-8 s (una cienmillonésima de segundo) de antigüedad, la fuerza electrodébil se dividió en la interacción nuclear débil, que rige la radiactividad, y el electromagnetismo.

La teoría inflacionaria, teoría estándar del origen del Universo, implica un proceso denominado inflación, y se basa en una combinación de las ideas cosmológicas con la teoría cuántica y la física de las partículas elementales. Si tomamos como tiempo cero el momento en que todo surgió a partir de una singularidad, la inflación explica cómo una “semilla” extremadamente densa y caliente que contenía toda la masa y energía del Universo, pero de un tamaño mucho menor que un protón, salió despedida hacia afuera en una expansión que ha continuado en los miles de millones de años transcurridos desde entonces. Según la teoría inflacionaria, este empuje inicial fue debido a procesos en los que una sola fuerza unificada de la naturaleza se dividió en las cuatro fuerzas fundamentales que existen hoy: la gravitación, el electromagnetismo y las interacciones nucleares fuerte y débil. Esta breve descarga de antigravedad surgió como una predicción natural de los intentos de crear una teoría que combinara las cuatro fuerzas (véase Teoría de la gran unificación).

La fuerza inflacionaria sólo actuó durante una minúscula fracción de segundo, pero en ese tiempo duplicó el tamaño del Universo 100 veces o más, haciendo que una bola de energía unas 1020 veces más pequeña que un protón se convirtiera en una zona de 10 cm de extensión (aproximadamente como una naranja grande) en sólo 15 × 10-33 segundos. El empuje hacia afuera fue tan violento que, aunque la gravedad está frenando las galaxias desde entonces, la expansión del Universo continúa en la actualidad.

Aunque siguen debatiéndose los detalles del funcionamiento de la inflación, los cosmólogos creen entender todo lo que ha ocurrido con posterioridad, desde que el Universo tenía una diezmilésima de segundo de antigüedad, cuando la temperatura era de un billón de grados y la densidad era en todas partes la que existe actualmente en el núcleo de un átomo. En esas condiciones, las partículas materiales como electrones o protones eran intercambiables con energía en forma de fotones (radiación). Los fotones perdían energía, o desaparecían por completo, y la energía perdida se convertía en partículas. Al contrario, las partículas desaparecían y su energía reaparecía como fotones, según la ecuación de Einstein E = mc2. Aunque estas condiciones son extremas en comparación con nuestra experiencia cotidiana, corresponden a energías y densidades estudiadas rutinariamente en los actuales aceleradores de partículas: por eso los teóricos están convencidos de entender lo que ocurría cuando todo el Universo se hallaba en ese estado.

A medida que el Universo se iba enfriando, los fotones y las partículas materiales ya no tenían suficiente energía para ser intercambiables, y el Universo, aunque seguía expandiéndose y enfriándose, empezó a estabilizarse en un estado en el que el número de partículas permanecía constante (materia estable bañada en el calor de la radiación). Una centésima de segundo después del “principio”, la temperatura había caído hasta los 100.000 millones de grados, y los protones y neutrones se habían estabilizado. Al principio había el mismo número de protones que de neutrones, pero durante un tiempo las interacciones entre estas partículas y los electrones de alta energía convirtieron más neutrones en protones que protones en neutrones. Una décima de segundo después del principio, ya sólo había 38 neutrones por cada 62 protones, y la temperatura había bajado a 30.000 millones de grados. Algo más de un segundo después del nacimiento del Universo sólo había 24 neutrones por cada 76 protones, la temperatura había descendido hasta 10.000 millones de grados, y la densidad de todo el Universo “sólo” era 380.000 veces superior a la del agua.

Para entonces, el ritmo de los cambios estaba decelerando. Fueron necesarios casi 14 segundos desde el principio para que el Universo se enfriara hasta los 3.000 millones de grados, momento en que las condiciones fueron lo suficientemente suaves para permitir los procesos de fusión que se producen en una bomba de hidrógeno (véase Armas nucleares) o en el corazón del Sol. En esa fase, los protones y neutrones individuales empezaron a permanecer unidos al colisionar, formando un núcleo de deuterio (hidrógeno pesado) antes de separarse por efecto de nuevas colisiones. Algo más de tres minutos después del principio, el Universo era unas 70 veces más caliente que el centro del Sol en la actualidad. Se había enfriado hasta sólo 1.000 millones de grados. Para entonces únicamente había 14 neutrones por cada 86 protones, pero llegados a ese punto los núcleos de deuterio no sólo podían formarse sino también sobrevivir como núcleos estables a pesar de las colisiones. Esto hizo posible que algunos neutrones de la bola de fuego del Big Bang sobrevivieran hasta el momento actual.

6. EL ORIGEN DE LA VIDA

LA VIDA EN LAS DIVERSAS ERAS GEOLÓGICAS

LA ERA PALEOZOICA. Duró hasta hace 245 millones de años. Se divide en periodos: cámbrico, ordovícico, silúrico, devónico, carbonífero y pérmico. Los fósiles guía de la primera mitad del paleozoico son algunos invertebrados como trilobites, graptolitos y crinoideos. Los correspondientes a la segunda mitad de esta era comprenden algunos fósiles de plantas y de vertebrados, como peces y reptiles.

Periodo cámbrico Al principio del periodo cámbrico, hace 570 millones de años, la vida animal estaba confinada por completo a los mares. Al final del periodo, todos los filos (categoría máxima en taxonomía) del reino animal ya existían, excepto los vertebrados. Los animales más característicos fueron los trilobites, unas formas primitivas de artrópodos, que alcanzaron su máximo desarrollo en este periodo y que comenzaron a extinguirse al final de la era paleozoica. Aparecieron los primeros caracoles, así como los moluscos cefalópodos. Otros grupos animales representativos del cámbrico fueron los braquiópodos, los briozoos y los foraminíferos. En el reino vegetal las plantas predominantes eran las algas en los océanos y los líquenes en la tierra.

Periodo ordovícico. Los animales más característicos de este periodo, que comenzó hace 510 millones de años, fueron los graptolitos, pequeños hemicordados (animales que poseían una estructura anatómica precursora de la espina dorsal) coloniales. Aparecieron los primeros vertebrados, unos peces primitivos, y los corales. Los animales más grandes fueron unos cefalópodos (moluscos), que tenían un caparazón de unos 3 m de largo. Las plantas eran similares a las del periodo anterior.

Periodo silúrico. Este periodo se inició hace 439 millones de años. El avance evolutivo más importante fue la aparición del primer animal de respiración aérea, un escorpión. Se han encontrado fósiles de este organismo en Escandinavia y Gran Bretaña. El primer fósil clasificado de una planta vascular (plantas terrestres con tejidos que transportan el alimento), pertenece a este periodo. Eran plantas simples cuyos tallos y hojas no estaban diferenciados.

Periodo devónico. Las formas de vida animal predominantes en este periodo, que comenzó hace 408,5 millones de años, fueron varios tipos de peces, que abarcaban tiburones, dipnoos, peces acorazados y una forma primitiva de peces con escamas ganoideas, a partir de los cuales evolucionaron probablemente los ancestros de los anfibios. Algunos restos fósiles encontrados en Pensilvania y Groenlandia, indican que ya existían los primeros anfibios. También había corales, estrellas de mar, esponjas y trilobites. El primer insecto conocido se ha encontrado en rocas devónicas.

De este periodo se conservan un número considerable de plantas fosilizadas; durante él se desarrollaron las plantas leñosas, y a finales del devónico lo hicieron otras plantas terrestres, como helechos, helechos con semillas, equisetos y unos árboles de tronco escamoso relacionados con los actuales selagos. Aunque en la actualidad los equivalentes a estos grupos son plantas pequeñas en su mayoría, en el devónico fueron especies de gran tamaño y casi arborescentes. Algunos restos fósiles sugieren la existencia de bosques; incluso han aparecido tocones petrificados (mineralizados) de grandes plantas del devónico que medían unos 60 cm de diámetro.

Periodo carbonífero. El periodo carbonífero comenzó hace unos 362,5 millones de años. Durante la primera parte de este periodo había una gran variedad de equinodermos y foraminíferos en los mares, que incluso superaban a las formas animales que aparecieron en el devónico. Extraños tiburones, como los estetacándidos, predominaron entre todos los grandes organismos marinos. Los anfibios se extendieron y diversificaron. Crassigyrinus era un anfibio con forma de reptil, cabeza y boca grandes y patas de tamaño reducido, adaptado a la vida acuática. Diversas plantas terrestres comenzaron a diversificarse y a aumentar de tamaño, sobre todo en zonas pantanosas.

En la segunda parte del carbonífero surgieron los reptiles, adaptados a la vida terrestre, que evolucionaron a partir de los anfibios. Otros animales de este periodo fueron los arácnidos, las serpientes, los escorpiones, más de 800 especies de ranas y los insectos más grandes que han existido (había una especie parecida a las libélulas, con una envergadura de ala de 74 cm). Los vegetales mayores eran unos árboles escamosos, cuyos troncos medían más de 1,8 m de diámetro en la base y tenían una altura de 30 metros. También había unas gimnospermas primitivas llamadas Cordaites, que tenían tallos carnosos, estaban rodeadas por una cubierta leñosa y eran más delgadas y más altas que los anteriores. También aparece en este periodo la primera conífera verdadera (una forma avanzada de gimnosperma, que consiste en una planta vascular con semillas, pero sin flores).

Periodo pérmico. Este periodo comenzó hace 290 millones de años y durante el mismo ocurrieron sucesos tan relevantes como la desaparición de gran parte de los organismos marinos y la rápida evolución y expansión de los reptiles. Los reptiles de este periodo fueron, a grandes rasgos, de dos tipos: reptiles semejantes a los lagartos, completamente terrestres, y reptiles semiacuáticos lentos. De entre todos, fueron un pequeño grupo, los Terápsidos, los que dieron lugar a los mamíferos. La vegetación estaba constituida sobre todo por helechos y coníferas.

LA ERA MESOZOICA. También se denomina con frecuencia la era de los reptiles, debido a que esta clase animal dominó la Tierra durante todo este tiempo. Comenzó hace 245 millones de años e incluye los periodos triásico, jurásico y cretácico. Los fósiles guía de esta era son un grupo de cefalópodos extintos, llamados ammonites, y ciertas formas extintas de los dólares de arena y los erizos de mar.

Periodo triásico. Los reptiles mesozoicos más destacados, los dinosaurios, aparecieron por primera vez en este periodo, que comenzó hace 245 millones de años. Los dinosaurios del triásico no eran tan grandes como lo serían sus descendientes al final de la era. Eran animales de pequeño tamaño que corrían sobre sus dedos posteriores, balanceando su cuerpo con fuerza; tenían una cola carnosa y rara vez excedían los 4,5 m de longitud. Otros reptiles del periodo son criaturas acuáticas como el ictiosaurio y reptiles voladores como el pterosaurio.

En este periodo aparecieron los primeros mamíferos. Los restos fósiles de estos animales están muy fragmentados, pero parece que eran de pequeño tamaño y de apariencia similar a un reptil. En el mar surgieron los teleósteos, los primeros ejemplares de los peces óseos modernos. La vida vegetal del triásico incluía una gran variedad de algas marinas. En tierra, la vegetación predominante incluía especies de hoja perenne como los ginkgos, las coníferas y las palmeras. También había pequeños equisetos (colas de caballo) y helechos, que ya existían antes, aunque comenzaron a extinguirse los miembros de mayor tamaño.

Periodo jurásico. El periodo jurásico empezó hace 208 millones de años y durante este periodo los dinosaurios continuaron evolucionando con gran variedad de tamaños y diversidad de formas. Una clasificación general de los mismos incluye: los saurópodos, que eran cuadrúpedos corpulentos como el Apatosaurus (antes Brontosaurus); dinosaurios carnívoros bípedos, como el Tyrannosaurus; dinosaurios herbívoros bípedos, como el Trachodon; y los dinosaurios acorazados cuadrúpedos, como el Stegosaurus. También había reptiles alados como el pterosaurio (pterodáctilo), que durante el jurásico desarrolló sus pequeñas alas hasta alcanzar una envergadura de 1,2 m. Los reptiles marinos eran los plesiosaurios, de cuerpo aplanado como el de las tortugas, cuello largo y aletas anchas para nadar; los ictiosaurios, parecidos a los delfines, y unos cocodrilos primitivos.

Los mamíferos del jurásico eran menores que cualquier perro de pequeño tamaño y se incluían en cuatro órdenes. Había ya insectos de órdenes actuales que incluían polillas, moscas, escarabajos, saltamontes y termitas. Los crustáceos estaban representados por langostas y camarones y los moluscos por grupos hoy extintos como ammonites y belemnites. Estos últimos presentaban, al igual que los calamares, un caparazón interno. La vida vegetal durante el jurásico estuvo dominada por las cícadas, plantas de troncos gruesos parecidas a palmeras. Los fósiles de plantas del jurásico están distribuidos tanto en zonas templadas de la Tierra como en las regiones polares, lo cual indica que el clima era suave y uniforme.

Periodo cretácico. Aún durante este periodo, que se inició hace 145 millones de años, los reptiles fueron las formas de vida dominantes. Los cuatro tipos de dinosaurios que se encontraban en el periodo anterior aún subsistían y además surgió el grupo de los dinosaurios con cuernos. A finales del cretácico, hace 65 millones de años, todas estas criaturas comenzaron a extinguirse. El pterosaurio más grande que ha existido vivió en esta época. En Texas (Estados Unidos) se descubrió un fósil de este animal con una envergadura de alas de más de 1,5 metros. Otros reptiles eran las serpientes y los lagartos. Se han descubierto también varios tipos de aves cretácicas, como el Hesperornis, un ave buceadora de 1,8 m de largo que tenía alas vestigiales y era incapaz de volar. Los mamíferos incluían a los primeros marsupiales, muy parecidos a las zarigüeyas actuales, y a los primeros animales placentarios, pertenecientes a un grupo de insectívoros. Aparecieron también los cangrejos y varias clases de peces modernos.

El paso evolutivo más importante en el reino vegetal durante el periodo cretácico es el desarrollo de las angiospermas (plantas con flor), cuyos fósiles aparecen en formaciones rocosas cretácicas. Se desarrollaron las plantas caducifolias, entre las que se encontraban la higuera, el magnolio, el sasafrás y el chopo. Al final del periodo aparecen muchas de las especies modernas de árboles y arbustos, que representan más del 90% de las plantas conocidas de este periodo. Entre los fósiles del cretácico medio se encuentran restos de hayas, acebos, laureles, arces, robles, plátanos y nogales. Algunos paleontólogos creen que estos árboles caducifolios (que pierden las hojas cíclicamente), ya existían en el jurásico pero crecieron sólo en zonas altas, cuyas condiciones no son favorables para la conservación de restos fósiles.

LA ERA CENOZOICA. La era cenozoica comenzó hace 65 millones de años. Se divide en dos periodos, el terciario y el cuaternario, que abarca hasta nuestros días. Sin embargo, debido a la cantidad de información que manejan los paleontólogos sobre esta era, se tiende a dividir cada periodo en épocas. Durante la primera parte de esta era, tuvo lugar una brusca transición de la edad de los reptiles a la edad de los mamíferos, ya que desaparecieron los grandes dinosaurios y otros reptiles que habían dominado la vida durante el mesozoico.

Los fósiles guía del cenozoico suelen ser microscópicos, como por ejemplo las diminutas conchas de los foraminíferos. También se utiliza el polen fósil para la datación de los estratos rocosos de esta era.

Época del paleoceno. El paleoceno marca el inicio de la era cenozoica. De esta época se conocen siete grupos de mamíferos y todos parecen ser originarios del norte de Asia, desde donde migraron a otras partes del mundo. Estos mamíferos primitivos tenían muchas características en común. Eran pequeños y ninguna especie superaba la talla de un oso. Eran todos cuadrúpedos, caminaban sobre la planta de los pies, con cinco dedos cada uno. Es probable que tuvieran la cabeza pequeña y el hocico estrecho y por tanto una cavidad craneal reducida. Los mamíferos predominantes del periodo fueron los miembros de tres grupos ya desaparecidos: los creodontos, ancestros de los carnívoros modernos; los amblípodos, pequeños pero pesados; y los condilartos, herbívoros de cuerpo ligero y cerebro pequeño. De los grupos del paleoceno, sobreviven los marsupiales, los insectívoros, los primates y los roedores.

Época del eoceno. Durante el eoceno, que comenzó hace 56,5 millones de años, aparecieron una serie de ancestros que evolucionarían hasta animales de nuestro tiempo. Eran de pequeña estatura, algunos de ellos parecidos a caballos, rinocerontes, camellos, roedores y monos. Los creodontos y los amblípodos continuaron evolucionando durante esta época; sin embargo, los condilartos se extinguieron antes de finalizar la época. Surgieron los primeros mamíferos acuáticos, antecesores de las ballenas actuales, y algunas aves, como las águilas, los pelícanos, las codornices y los buitres. Las variaciones que tuvieron lugar en la vegetación respondían a las distintas adaptaciones de las plantas a los cambios climáticos.

Época del oligoceno. Durante esta época, que comenzó hace 35,4 millones de años, desaparecieron la mayoría de los mamíferos arcaicos de las primeras épocas del cenozoico. En su lugar aparecieron representantes de muchos de los mamíferos actuales. Los creodontos se extinguieron y surgieron los primeros carnívoros verdaderos, parecidos a los gatos y a los perros. También vivió un primate antropoideo en el norte de América que desapareció al final de la época. Dos grupos de animales ya extintos, evolucionaron durante este tiempo: los titanoterios, relacionados con los rinocerontes y los caballos, y los oreodontos, herbívoros de tamaño pequeño emparentados con los camellos.

Época del mioceno. El desarrollo de los mamíferos durante el mioceno, que empezó hace 23,3 millones de años, estuvo relacionado de forma directa con un importante avance evolutivo en el reino vegetal, la aparición de las gramíneas. Estas plantas, ideales como forraje, contribuyeron al crecimiento y desarrollo de los animales herbívoros, como los caballos y los rinocerontes, que abundaron en el mioceno. Los mastodontes siguieron evolucionando y se generalizó la presencia del Dryopithecus, un animal parecido a los gorilas, en Europa y Asia. Algunos carnívoros, como los gatos y una especie de perro-lobo, se extendieron por varias partes del mundo.

Epocas del plioceno y pleistoceno. El plioceno comenzó hace 5,2 millones de años y el pleistoceno hace 1,64 millones de años. La paleontología de ambas épocas no difiere mucho y es considerada por muchos zoólogos como el clímax de la “edad de los mamíferos”. Estas épocas se caracterizaron por la abundancia de grandes mamíferos, la mayoría de los cuales todavía perviven. Algunos de ellos eran los búfalos, los elefantes y los mamuts. Estos últimos se extinguieron antes de finalizar el pleistoceno. En Europa hubo antílopes e hipopótamos, carnívoros como leones, tejones, zorros, linces, nutrias, pumas, mofetas y otras especies desaparecidas, como el gran tigre dientes de sable. En el norte de América surgieron los primeros osos, debido a las poblaciones que migraron desde Asia. El armadillo y el perezoso terrestre migraron del sur al norte del continente americano, y el buey almizclero se extendió hacia el sur desde las regiones árticas. Los seres humanos, como tales, aparecieron en esta época.

2. LA CELULA Y SUS FUNCIONES

2.1. TEORIA CELULAR

DEFINICIÓN

Célula, unidad mínima de un organismo capaz de actuar de manera autónoma. Todos los organismos vivos están formados por células, y en general se acepta que ningún organismo es un ser vivo si no consta al menos de una célula. Algunos organismos microscópicos, como bacterias y protozoos, son células únicas, mientras que los animales y plantas son organismos pluricelulares que están formados por muchos millones de células, organizadas en tejidos y órganos. Aunque los virus y los extractos acelulares realizan muchas de las funciones propias de la célula viva, carecen de vida independiente, capacidad de crecimiento y reproducción propios de las células y, por tanto, no se consideran seres vivos. La biología estudia las células en función de su constitución molecular y la forma en que cooperan entre sí para constituir organismos muy complejos, como el ser humano. Para poder comprender cómo funciona el cuerpo humano sano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen.

2.2. ESTRUCTURA CELULAR

MEMBRANA

El contenido de todas las células vivas está rodeado por una membrana delgada llamada membrana plasmática, o celular, que marca el límite entre el contenido celular y el medio externo. La membrana plasmática es una película continua formada por una doble capa de moléculas de lípidos y proteínas, de entre 4 y 5 nanómetros (nm) de espesor y actúa como una barrera selectiva reguladora de la composición química de la célula. La mayor parte de los iones y moléculas solubles en agua son incapaces de cruzar de forma espontánea esta barrera, y precisan de la concurrencia de proteínas específicas de transporte o de canales proteicos. De este modo la célula mantiene concentraciones de iones y moléculas pequeñas distintas de las imperantes en el medio externo. Otro mecanismo, que consiste en la formación de pequeñas vesículas de membrana que se incorporan a la membrana plasmática o se separan de ella, permite a las células animales transferir macromoléculas y partículas aún mayores a través de la membrana.

Membranas plasmáticas de dos células La membrana plasmática (MP) es una estructura semipermeable que separa la célula del medio externo. Consiste en una capa doble de fosfolípidos que permite el movimiento de agua y ciertos iones a través de ella, mediante la interacción con proteínas específicas. En los protozoos, la membrana envuelve y absorbe fluidos y material celular nutritivo, y expulsa residuos.

Casi todas las células bacterianas y vegetales están además encapsuladas en una pared celular gruesa y rígida compuesta mayoritariamente de polisacáridos (el más abundante en las plantas superiores es la celulosa). La pared celular, que es externa a la membrana plasmática, mantiene la forma de la célula y la protege de daños mecánicos, pero también limita el movimiento celular y la entrada y salida de materiales.

[pic]

Membrana plasmática

La membrana plasmática de las células eucarióticas es una estructura dinámica formada por 2 capas de fosfolípidos en las que se embeben moléculas de colesterol y proteínas. Los fosfolípidos tienen una cabeza hidrófila y dos colas hidrófobas. Las dos capas de fosfolípidos se sitúan con las cabezas hacia fuera y las colas, enfrentadas, hacia dentro. Es decir, los grupos hidrófilos se dirigen hacia la fase acuosa, los de la capa exterior de la membrana hacia el líquido extracelular y los de la capa interior hacia el citoplasma. Las proteínas embebidas en las capas de fosfolípidos cumplen diversas funciones como la de transportar grandes moléculas hidrosolubles, como azúcares y ciertos aminoácidos. También hay proteínas unidas a carbohidratos (glicoproteínas) embebidas en la membrana.

CITOPLASMA

El citoplasma comprende todo el volumen de la célula, salvo el núcleo. En él tienen lugar la mayor parte de las reacciones metabólicas de la célula. Está compuesto por el citosol, una solución acuosa concentrada que engloba numerosas estructuras especializadas y orgánulos.

El citosol es un gel de base acuosa que contiene gran cantidad de moléculas grandes y pequeñas, y en la mayor parte de las células es, con diferencia, el compartimiento más voluminoso (en las bacterias es el único compartimiento intracelular). En el citosol se producen muchas de las funciones más importantes del metabolismo celular, como las primeras etapas de descomposición de moléculas nutritivas y la síntesis de muchas de las grandes moléculas que constituyen la célula. Aunque muchas moléculas del citosol se encuentran en estado de solución verdadera y se desplazan con rapidez de un lugar a otro por difusión libre, otras están ordenadas de forma rigurosa. Estas estructuras ordenadas confieren al citosol una organización interna que actúa como marco para la fabricación y descomposición de grandes moléculas y canaliza muchas de las reacciones químicas celulares a lo largo de vías restringidas.

NUCLEO

El órgano más conspicuo en casi todas las células animales y vegetales es el núcleo; está rodeado de forma característica por una membrana, es esférico y mide unas 5-8 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado. Pero justo antes de que la célula se divida, se condensan y adquieren grosor suficiente para ser detectables como estructuras independientes. El ADN del interior de cada cromosoma es una molécula única muy larga, que aparece enrollada, y que contiene secuencias lineales de genes. Éstos encierran a su vez instrucciones codificadas para la construcción de las moléculas de proteínas y ARN necesarias para producir una copia funcional de la célula.

El núcleo está rodeado por una membrana doble compuesta por dos bicapas lipídicas, y la interacción con el resto de la célula (es decir, con el citoplasma) tiene lugar a través de unos orificios llamados poros nucleares. El nucleolo es una región especial en la que se sintetiza el ARN ribosómico (ARNr), necesario para formar las dos subunidades inmaduras integrantes del ribosoma, que migran al citoplasma a través de los poros nucleares, donde se unirán para constituir los ribosomas funcionales.

El núcleo controla la síntesis de proteínas en el citoplasma enviando mensajeros moleculares. En él se produce la síntesis de cadenas largas de ARN nuclear heterogéneo a partir de las instrucciones contenidas en el ADN (transcripción). Estas cadenas se modifican (transformación) para convertirse en fragmentos más cortos de ARN mensajeros (ARNm) que sólo en un pequeño porcentaje salen al citoplasma a través de los poros nucleares. Una vez en el citoplasma, el ARNm se acopla a los ribosomas y codifica la estructura primaria de una proteína específica (traducción).

FUNCIONES

En los organismos vivos no hay nada que contradiga las leyes de la química y la física. El 99% del peso de una célula está dominado por 6 elementos químicos: carbono, hidrógeno, nitrógeno, oxígeno, fósforo y azufre. El agua representa el 70% del peso de una célula, y gran parte de las reacciones intracelulares tienen lugar en el medio acuoso y en un intervalo de temperaturas pequeño. La química de los seres vivos, objeto de estudio de la bioquímica, está dominada por moléculas de carbono. La química de los organismos vivos es muy compleja, más que la de cualquier otro sistema químico conocido. Está dominada y coordinada por polímeros de gran tamaño (macromoléculas), moléculas formadas por encadenamiento de moléculas orgánicas pequeñas que se encuentran libres en el citoplasma celular. En una célula existen 4 familias de moléculas orgánicas pequeñas: azúcares (monosacáridos), aminoácidos, ácidos grasos y nucleótidos. Los tipos principales de macromoléculas son las proteínas, formadas por cadenas lineales de aminoácidos; los ácidos nucleicos, ADN y ARN, formados por nucleótidos, y los oligosacáridos y polisacáridos, formados por subunidades de monosacáridos. Los ácidos grasos, al margen de suponer una importante fuente alimenticia para la célula, son los principales componentes de la membrana celular. Las propiedades únicas de todos estos compuestos permiten a células y organismos alimentarse, crecer y reproducirse.

2.3. ORGANULOS CITOPLÁSMICOS

MITOCONDRIAS

Las mitocondrias son uno de los orgánulos más conspicuos del citoplasma; contienen su propio ADN y se encuentran en casi todas las células eucarióticas. Observadas al microscopio, presentan una estructura característica: la mitocondria tiene forma alargada u oval de varias micras de longitud y está envuelta por dos membranas: una externa, que delimita el espacio intermembranoso y otra interna, muy replegada, que engloba la matriz mitocondiral. Las mitocondrias son los orgánulos productores de energía (ATP). La célula necesita energía para crecer y multiplicarse, y las mitocondrias aportan casi toda esta energía realizando las últimas etapas de la descomposición de las moléculas de los alimentos. Estas etapas finales consisten en el consumo de oxígeno y la producción de dióxido de carbono, proceso llamado respiración, por su similitud con la respiración pulmonar. Sin mitocondrias, los animales y hongos no serían capaces de utilizar oxígeno para extraer toda la energía de los alimentos y mantener con ella el crecimiento y la capacidad de reproducirse. Los organismos llamados anaerobios viven en medios sin oxígeno, y todos ellos carecen de mitocondrias.

[pic]

Mitocondria

Las mitocondrias, estructuras diminutas alargadas que se encuentran en el hialoplasma (citoplasma transparente) de la célula, se encargan de producir energía. Contienen enzimas que ayudan a transformar material nutritivo en trifosfato de adenosina (ATP), que la célula puede utilizar directamente como fuente de energía. Las mitocondrias suelen concentrarse cerca de las estructuras celulares que necesitan gran aportación de energía, como el flagelo que dota de movilidad a los espermatozoides de los vertebrados y a las plantas y animales unicelulares.

PLASTOS Y CLOROPLASTOS

Los cloroplastos son orgánulos aún mayores, que también poseen su propio ADN, y que sólo se encuentran en las células de plantas y algas. Su estructura es aún más compleja que la mitocondrial: además de las dos membranas de la envoltura, que no se repliegan formando crestas, los cloroplastos tienen numerosos sacos internos en forma de disco (denominados tilacoides), interconectados entre sí, que están formados por una membrana que encierra el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía, y va acompañada de liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.

RETICULO ENDOPLÁSMICO

[pic]

Retículo endoplasmático rugoso

El principal centro de síntesis proteica de la célula es la superficie del retículo endoplasmático rugoso (RER). Es una estructura característica formada por un apilamiento de membranas con pequeños gránulos oscuros llamados ribosomas. Las proteínas sintetizadas pasan de la superficie del RER al exterior de la célula. En los ribosomas que puntean la superficie del RER también se sintetizan proteínas, pero éstas permanecen dentro de la célula para realizar funciones metabólicas.

Núcleos, mitocondrias y cloroplastos no son los únicos orgánulos internos de las células eucarióticas delimitados por membranas. El citoplasma contiene también muchos otros orgánulos envueltos por una membrana única que desempeñan funciones diversas. Los más importantes son el retículo endoplasmático, el aparato de Golgi, los lisosomas y los peroxisomas. Casi todas guardan relación con la introducción de materias primas y la expulsión de sustancias elaboradas y productos de desecho por parte de la célula. Por ello, en las células especializadas en la secreción de proteínas, por ejemplo, determinados orgánulos están muy atrofiados; en cambio, los orgánulos son muy numerosos en las células de los vertebrados superiores especializadas en capturar y digerir los virus y bacterias que invaden el organismo.

La mayor parte de los componentes de la membrana celular se forman en una red tridimensional irregular de espacios rodeada a su vez por una membrana y llamada retículo endoplasmático (RE), en el cual se forman también los materiales que son expulsados por la célula. Una parte importante de la membrana del retículo endoplasmático aparece cubierta por ribosomas adheridos a su superficie. El aparato de Golgi está formado por pilas de sacos aplanados envueltos en membrana; este aparato recibe las moléculas formadas en el retículo endoplasmático, las transforma y las dirige hacia distintos lugares de la célula. Los lisosomas son pequeños orgánulos de forma irregular que contienen reservas de enzimas necesarias para la digestión primaria de numerosas macromoléculas y de partículas absorbidas desde el exterior celular. Los peroxisomas son vesículas pequeñas envueltas en membrana que proporcionan un sustrato delimitado para reacciones en las cuales se genera y degrada peróxido de hidrógeno, un compuesto que puede ser letal para la célula. Las membranas forman muchas otras vesículas pequeñas encargadas de transportar materiales entre orgánulos. En una célula animal típica, los orgánulos limitados por membrana pueden ocupar hasta la mitad del volumen celular total

2.4. NUCLEO

MEMBRANA NUCLEAR

[pic]

Núcleo celular

El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado nucleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre nucleoplasma y citoplasma.

NUCLEOLO

El nucleolo es una región especial en la que se sintetiza el ARN ribosómico (ARNr), necesario para formar las dos subunidades inmaduras integrantes del ribosoma, que migran al citoplasma a través de los poros nucleares, donde se unirán para constituir los ribosomas funcionales.

estructura situada dentro del núcleo celular que interviene en la formación de los ribosomas (orgánulos celulares encargados de la síntesis de proteínas). El núcleo celular contiene típicamente uno o varios nucleolos, que aparecen como zonas densas de fibras y gránulos de forma irregular. No están separados del resto del núcleo por estructuras de membrana. Véase Célula.

Cada ribosoma consta de cuatro moléculas o subunidades de ácido ribonucleico (ARN) y numerosas proteínas. En la especie humana, tres de las cuatro subunidades ribosómicas de ARN se sintetizan en el nucleolo. La cuarta se forma fuera de él y se transporta a su interior antes del ensamblaje del ribosoma.

La información genética de las proteínas ribosómicas, contenida en el núcleo, se copia o transcribe a un mensajero químico especial llamado ARN mensajero (ARNm). Éste abandona el núcleo y, una vez en el citoplasma, traduce la información que contiene a las proteínas ribosómicas. Las nuevas proteínas así formadas penetran en el nucleolo y se combinan con las cuatro subunidades ribosómicas de ARN para crear dos estructuras o subunidades, una grande y otra pequeña. Éstas salen del núcleo y penetran en el citoplasma, donde se combinan para formar el ribosoma completo. El nucleolo tarda cerca de una hora en formar un solo ribosoma, aunque cada nucleolo produce miles de ellos a la vez. En una célula en fase de crecimiento activo, el nucleolo forma unos diez millones de ribosomas antes de cada división celular.

CROMATINA

Complejo macromolecular formado por la asociación de ácido desoxirribonucleico o ADN y proteínas básicas, las histonas, que se encuentra en el núcleo de las células eucarióticas. Durante la interfase (periodo de división no aparente) su función es permitir la expresión de la información genética. Cuando se produce la división celular, se concentra y forma los cromosomas. Las fibras de cromatina están constituidas por una sucesión de estructuras redondeadas, los nucleosomas. Éstos tienen un núcleo llamado octámero, formado por cuatro pares de histonas; otra histona, la H1, mantiene unidos los octámeros. Doscientos pares de nucleótidos de ADN rodean las proteínas para completar cada nucleosoma. Visto al microscopio electrónico tiene el aspecto de un collar de cuentas. Para formar los cromosomas, las fibras se disponen en bucles que se sujetan a un armazón de proteínas no histónicas.

ACIDOS NUCLEICOS

Moléculas muy complejas que producen las células vivas y los virus. Reciben este nombre porque fueron aisladas por primera vez del núcleo de células vivas. Sin embargo, ciertos ácidos nucleicos no se encuentran en el núcleo de la célula, sino en el citoplasma celular. Los ácidos nucleicos tienen al menos dos funciones: transmitir las características hereditarias de una generación a la siguiente y dirigir la síntesis de proteínas específicas. El modo en que los ácidos nucleicos realizan estas funciones es el objetivo de algunas de las más prometedoras e intensas investigaciones actuales. Los ácidos nucleicos son las sustancias fundamentales de los seres vivos, y se cree que aparecieron hace unos 3.000 millones de años, cuando surgieron en la Tierra las formas de vida más elementales. Los investigadores han aceptado que el origen del código genético que portan estas moléculas es muy cercano en el tiempo al origen de la vida en la Tierra. Los bioquímicos han conseguido descifrarlo, es decir, determinar la forma en que la secuencia de los ácidos nucleicos dicta la estructura de las proteínas.

CROMOSOMAS

Cromosoma, en citología, nombre que recibe una diminuta estructura filiforme formada por ácidos nucleicos y proteínas presente en todas las células vegetales y animales. El cromosoma contiene el ácido nucleico, ADN, que se divide en pequeñas unidades llamadas genes. Éstos determinan las características hereditarias de la célula u organismo. Las células de los individuos de una especie determinada suelen tener un número fijo de cromosomas, que en las plantas y animales superiores se presentan por pares. El ser humano tiene 23 pares de cromosomas. En estos organismos, las células reproductoras tienen por lo general sólo la mitad de los cromosomas presentes en las corporales o somáticas. Durante la fecundación, el espermatozoide y el óvulo se unen y reconstruyen en el nuevo organismo la disposición por pares de los cromosomas; la mitad de estos cromosomas procede de un parental, y la otra mitad del otro. Es posible alterar el número de cromosomas de forma artificial, sobre todo en las plantas, donde se forman múltiplos del número de cromosomas normal mediante tratamiento con colchicina.

2.5. CELULAS ANIMAL Y VEGETAL

DIFERENCIAS ENTRE CÉLULA ANIMAL Y VEGETAL

Hay células de formas y tamaños muy variados. Algunas de las células bacterianas más pequeñas tienen forma cilíndrica de menos de una micra o µm (1 µm es igual a una millonésima de metro) de longitud. En el extremo opuesto se encuentran las células nerviosas, corpúsculos de forma compleja con numerosas prolongaciones delgadas que pueden alcanzar varios metros de longitud (las del cuello de la jirafa constituyen un ejemplo espectacular). Las células vegetales tienen habitualmente más de 100 µm de longitud (pudiendo alcanzar los 2-5 cm en las algas verdes) y forma poligonal, ya que están encerradas en una pared celular rígida. Las células de los tejidos animales suelen ser compactas, entre 10 y 20 µm de diámetro y con una membrana superficial deformable y casi siempre muy plegada.

Pese a las muchas diferencias de aspecto y función, todas las células están envueltas en una membrana —llamada membrana plasmática— que encierra una sustancia rica en agua llamada citoplasma. En el interior de las células tienen lugar numerosas reacciones químicas que les permiten crecer, producir energía y eliminar residuos. El conjunto de estas reacciones se llama metabolismo (término que proviene de una palabra griega que significa cambio). Todas las células contienen información hereditaria codificada en moléculas de ácido desoxirribonucleico (ADN); esta información dirige la actividad de la célula y asegura la reproducción y el paso de los caracteres a la descendencia. Estas y otras numerosas similitudes (entre ellas muchas moléculas idénticas o casi idénticas) demuestran que hay una relación evolutiva entre las células actuales y las primeras que aparecieron sobre la Tierra.

Hay células de formas y tamaños muy variados. Algunas de las células bacterianas más pequeñas tienen forma cilíndrica de menos de una micra o µm (1 µm es igual a una millonésima de metro) de longitud. En el extremo opuesto se encuentran las células nerviosas, corpúsculos de forma compleja con numerosas prolongaciones delgadas que pueden alcanzar varios metros de longitud (las del cuello de la jirafa constituyen un ejemplo espectacular). Las células vegetales tienen habitualmente más de 100 µm de longitud (pudiendo alcanzar los 2-5 cm en las algas verdes) y forma poligonal, ya que están encerradas en una pared celular rígida. Las células de los tejidos animales suelen ser compactas, entre 10 y 20 µm de diámetro y con una membrana superficial deformable y casi siempre muy plegada.

[pic]

Eucariota: célula animal

Las estructuras internas de la célula animal están separadas por membranas. Destacan las mitocondrias, orgánulos productores de energía, así como las membranas apiladas del retículo endoplasmático liso (productor de lípidos) y rugoso (productor de proteínas). El aparato de Golgi agrupa las proteínas para exportarlas a través de la membrana plasmática, mientras que