Leer Ensayo Completo Fichero De Actividades Didacticas

Fichero De Actividades Didacticas

Imprimir Documento!
Suscríbase a ClubEnsayos - busque más de 2.242.000+ documentos

Categoría: Temas Variados

Enviado por: Ensa05 16 mayo 2011

Palabras: 49124 | Páginas: 197

...

no pretende señalar al maestro lo que debe hacer en cada una de sus clases, pues se reconoce que el éxito de toda propuesta didáctica pasa por la aprobación, el estilo propio y el deseo de superación de quien la lleva a cabo. Por esta razón, las actividades que se incluyen en el fichero permiten amplias posibilidades de adaptación a las formas de trabajo de cada maestro, a las condiciones en que labora y a las posibilidades de aprendizaje de los alumnos. Las subsiguientes ediciones de este libro deberán ser corregidas, mejoradas y aumentadas a partir de los resultados de su utilización en la práctica. Para lograr este propósito, se ruega a los maestros enviar a la Secretaría de Educación Pública sus observaciones y propuestas.

Índice

Introducción Primer grado Tarjetas numéricas Tema 1: Números naturales, lectura y escritura, orden y comparación, adición y sustracción Dando tumbos Tema 2: Dibujos y trazos geométricos ¿Qué tan cerca? Tema 3: Números naturales: multiplicación Múltiplos y divisores Tema 4: Números naturales: división, múltiplos y divisores Geometría con papel Tema 5: Figuras básicas y ángulos El corredor Tema 6: Números decimales: Lectura y escritura, orden y comparación, adición y sustracción ¿Cómo es y dónde está? Tema 7: Representación gráfica Magia con decimales Tema 8: Números decimales: multiplicación ¿Cuántos ejes? Tema 9: Simetría axial ¿Cuánto sobra? Tema 10: Problemas de división Listones y varas Tema 11: Fracciones y porcentajes La fiesta de cumpleaños Tema 12: Cálculo de perímetros y áreas ¿Es proporcional? Tema 13: Proporcionalidad: primeros pasos El mejor carril Tema 14: Experimentos aleatorios Los hexaminós Tema 15: Sólidos Las fracciones egipcias Tema 16: Fracciones: simplificación, reducción a un común denominador, adición y sustracción El perro guardián Tema 17: Longitud de la circunferencia y área del círculo Fractales Tema 18: Números con signo Segundo grado Puntos cercanos Tema 1: Trazos geométricos y figuras básicas Explorando con los divisores Tema 2: Problemas de aritmética Cambiando la unidad Tema 3: Fracciones: multiplicación y división Las potencias Tema 4: Uso de exponentes y notación científica El abecedario y la simetría Tema 5: Reflexión respecto a una recta. Reflexión respecto a un punto Las ventanas del calendario Tema 6: Ecuaciones lineales: uso de la incógnita (primeros ejemplos) Diagramas y ecuaciones Tema 7: Números con signo Balanza y ecuaciones Tema 8: Ecuaciones lineales. Introducción a los métodos algebraicos de solución

6 9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 47 48 50 52 54 56 58 60 62

Rompecabezas Tema 9: Descomposición de figuras y equivalencia de áreas ¿Cómo cortar? Tema 10: Sólidos Costo de los discos compactos Tema 11: Uso de tablas, gráficas, porcentajes, promedios y densidades ¡Atínale! Tema 12: Noción frecuencial y noción clásica de la probabilidad Adivina el punto Tema 13: Actividades en el plano cartesiano ¿Cuánto pesa una manzana? Tema 14: Sistemas de ecuaciones lineales, problemas y método de sustitución Geometría y azulejos Tema 15: Ángulos entre paralelas Circulando Tema 16: Primeras exploraciones en el círculo Experimentos Tema 17: Tablas y gráficas de variación. Funciones Juegos con dados Tema 18: Polinomios en una variable Tercer grado Los clavos y las áreas Tema 1: Proporcionalidad y funciones lineales Fórmulas Tema 2: Ecuaciones y problemas Los costos cambian Tema 3: Regiones en el plano cartesiano y gráficas de funciones La velocidad y las matemáticas Tema 4: Ecuaciones y problemas (continuación) Triángulos con palillos Tema 5: Triángulos y cuadriláteros Raíz cuadrada Tema 6: Raíz cuadrada y métodos de aproximación ¿Qué te conviene? Tema 7: Presentación y tratamiento de la información El círculo Tema 8: El círculo La magia de los polinomios Tema 9: Operaciones con polinomios de una variable Cuadrados algebraicos Tema 10: Productos notables y factorización ¿Aprobar el examen sin estudiar? Tema 11: Problemas de probabilidad El pantógrafo Temas 12: Dibujo a escala y homotecias Pitágoras en el geoplano Tema 13: Semejanza y teorema de Pitágoras Patrones y ecuaciones Tema 14: Ecuaciones cuadráticas completas Sólidos de revolución Tema 15: Sólidos Rampas para patinetas Tema 16: Trigonometría: razones trigonométricas de un ángulo agudo (cálculo y primeras aplicaciones) Para medir polígonos regulares Tema 17: Problemas de trigonometría Calculando áreas Tema 18: Fracciones algebraicas Anexo A Anexo B Anexo C Anexo D Bibliografía consultada

64 66 68 70 72 74 76 78 80 82 85 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 123 124 125 126

Introducción

El Fichero de actividades didácticas. Matemáticas. Educación secundaria es un material de apoyo, dirigido a los maestros de este nivel educativo, en el que se sugieren actividades de estudio para realizarlas con los alumnos. Para el diseño de las actividades se consideraron, como punto de partida, el enfoque didáctico para el estudio, la enseñanza y el aprendizaje de las matemáticas, diversos problemas que se proponen en el Libro para el maestro. Matemáticas. Educación secundaria, la propuesta presentada en la Secuencia y organización de contenidos y algunas sugerencias de otros materiales que se consultaron. El fichero consta de 18 fichas por cada grado, las cuales representan una base sólida para que los profesores de matemáticas, a partir de su experiencia, puedan incorporar otras fichas y organicen el trabajo con sus alumnos de manera creativa e interesante durante el año lectivo. El enfoque didáctico actual revalora el trabajo profesional del maestro, en tanto que su labor no se limita a transmitir información y calificar el desempeño de los alumnos, sino que implica también analizar situaciones relacionadas con los contenidos, organizar secuencias que favorezcan la evolución de los procedimientos de los alumnos, plantear problemas, socializar diferentes estrategias de solución y evaluar diferentes aspectos del proceso de estudio. La realización de las actividades que se proponen en el fichero favorece la práctica de estas tareas, de manera que este material de apoyo es una contribución más para la actualización del maestro. Con base en su creatividad, el profesor puede modificar, enriquecer y llevar a cabo en su salón de clases las actividades propuestas, a partir de las cuales podrá planear otras situaciones que aborden los contenidos señalados en los programas de estudio.

Estructura de las fichas

Cada ficha inicia con un recuadro en el que se anotan los propósitos, los contenidos y, en algunos casos, el material. Los dos primeros se tomaron de la propuesta oficial de Secuencia y organización de contenidos. Por lo general, las fichas constan de dos o tres actividades después de las cuales se sugieren algunas variantes. En cada actividad se describen las indicaciones que el profesor debe dar inicialmente a los alumnos. Posteriormente se mencionan algunos posibles procedimientos para resolver las situaciones, aunque es muy probable que los alumnos generen otros. Es importante que el profesor favorezca la confrontación de las diferentes alternativas que proponen los alumnos, al margen de que conduzcan o no al resultado correcto.

Sugerencias metodológicas para trabajar con las fichas

Cada uno de los problemas que se presentan en las fichas ha sido seleccionado para que los alumnos lo resuelvan con sus propios medios. Los procedimientos que se describen son únicamente un apoyo para que el profesor tenga oportunidad de prever lo que se espera. En ocasiones, sólo después de que los alumnos hayan resuelto los problemas, conviene agregar alguna información.

6

Antes de trabajar con una ficha es conveniente que el profesor la lea y resuelva los problemas que se plantean. Seguramente se le ocurrirán nuevas preguntas que ayuden a enriquecer la actividad. Conviene dar el tiempo suficiente para que los alumnos resuelvan los problemas, de acuerdo con los conocimientos, destrezas y habilidades que posean. Es necesario que mientras los alumnos intentan resolver los problemas, el profesor observe atentamente el trabajo que desarrollan, y que analice las conjeturas, las estrategias, los conocimientos que ponen en juego y el tipo de errores que cometen. Esto le permitirá apreciar lo que saben hacer y, en función de esto, dar sugerencias, hacer preguntas para profundizar en los temas o quizás plantear otros problemas. Este trabajo también aportará elementos que le ayuden a evaluar de manera formativa y continua. Cuando la mayoría de los alumnos termine, el profesor debe animar a los equipos para que expliquen sus conjeturas, estrategias y resultados. Hay varias maneras de lograr que esta fase de la actividad provoque interés, en lugar de que se convierta en una carga repetitiva y monótona. Por ejemplo, cuando haya resultados distintos conviene anotarlos en el pizarrón y animar a los alumnos a averiguar cuáles son los correctos. Para culminar las actividades, el profesor debe hacer las precisiones necesarias, ya sea para formalizar los conocimientos generados por los alumnos, dar a conocer un procedimiento más o aclarar posibles confusiones. Es posible que los alumnos no estén acostumbrados a trabajar en equipos, ni a expresar o escuchar puntos de vista, pero si de manera sistemática se crea un ambiente de libertad y respeto, así como de autonomía en el trabajo, en poco tiempo se notará una actitud muy positiva hacia el estudio de las matemáticas. Es importante señalar la necesidad de que el profesor realice una evaluación de cada una de las fichas; esto es, llevar un registro en el que se anote, entre otras cosas, si los problemas planteados resultan un reto interesante para los alumnos, si los materiales didácticos fueron adecuados para las situaciones, si hubo necesidad de hacer modificaciones, cuáles fueron las dificultades para llevar a cabo las actividades, etcétera. Estas reflexiones serán útiles para el diseño de nuevas actividades acordes con el enfoque propuesto para la enseñanza de las matemáticas. Los alumnos tienen la última palabra en cuanto al interés que despierten las actividades. Ojalá que este material anime a los profesores a elaborar otras fichas, así como a compartir experiencias con otros compañeros o compañeras, después de llevar a cabo las actividades con los alumnos.

7

er

grado

Tarjetas numéricas

Tema 1: Números naturales: lectura y escritura, orden y comparación, adición y sustracción

Propósito Contenidos Material Enriquecer el significado de los números y sus operaciones mediante la solución de problemas diversos. Lectura, escritura, orden y comparación de números naturales. Seis tarjetas de cartulina de 7 cm x 4 cm por alumno.

Organice al grupo en equipos de cuatro alumnos y pídales que preparen, por alumno, cinco tarjetas como las que se muestran.

millones mil seis tres ocho

1

Luego escriba en el pizarrón el siguiente problema:

Encuentren todos los números que puedan obtenerse combinando las cinco tarjetas y anótenlos en su cuaderno en orden de menor a mayor, con letra y con número.

Los equipos empezarán a explorar las diferentes maneras en que pueden combinarse las tarjetas para escribir números que tengan sentido, por ejemplo:

seis millones tres mil ocho

Que se escribe: 6 003 008

Es probable que algunos equipos no encuentren todos los números que se pueden escribir con estos cinco nombres. Promueva un análisis colectivo para ver qué equipos encuentran más números distintos y cuáles tienen sentido y cuáles no. Esta actividad permite que los alumnos exploren, conjeturen, validen ante sus compañeros la escritura y lectura de números, así como la comparación y el orden de los mismos. Además se inician en el trabajo con técnicas de conteo, aunque éstas no se hagan explícitas. Enseguida, los representantes de equipo escribirán en el pizarrón (con cifras) los números hallados. Pida a los alumnos que determinen cuál es el número de menor valor y cuál el de mayor. Si analizan los resultados escritos en el pizarrón notarán que existen doce números diferentes que pueden formarse. Ocho millones seis mil tres Ocho millones tres mil seis Seis millones ocho mil tres Seis millones tres mil ocho Tres millones ocho mil seis Tres millones seis mil ocho Ocho mil seis millones tres Ocho mil tres millones seis Seis mil ocho millones tres Seis mil tres millones ocho Tres mil ocho millones seis Tres mil seis millones ocho

De los doce números el de mayor valor es: 8 006 000 003

Y el de menor valor: 3 006 008

Pida a los alumnos que, nuevamente por equipos, reúnan las cinco tarjetas de la actividad 1 y agreguen una sexta con la palabra ciento(s). Enseguida comente:

Encuentren la mayor cantidad posible de números que puedan formarse combinando de diferentes maneras las seis tarjetas y escríbanlos en su cuaderno con letra y número. Al finalizar veremos qué equipo encontró más números y cuál encontró el mayor y el menor posible.

2

10

Aclare que los paréntesis indican que pueden usar el singular ciento o el plural cientos. Resulta interesante que al agregar la tarjeta con la palabra ciento(s) el número de combinaciones posibles aumenta considerablemente. Por esta razón conviene establecer un tiempo límite para la actividad o bien establecer algunas restricciones como, por ejemplo, encontrar los mayores a mil millones o los menores a diez millones. Algunos números que construirán los alumnos son los siguientes:

seis mil ocho cientos millones tres

tres

millones

ocho

mil

seis

cientos

ocho

mil

millones

seis

cientos

tres

Los alumnos podrán constatar que esta actividad da lugar a combinaciones con números del orden de los cientos de miles de millones, por ejemplo:

ocho cientos seis mil tres millones

Éste es el número más grande que se puede formar con las seis tarjetas. Puede organizarse una competencia para ver qué equipo lo encuentra. Se sugiere que usted no valide las respuestas para que sean los alumnos quienes decidan cuál de los números propuestos por cada equipo es el mayor.

V ARIANTE

En vez de palabras, en las tarjetas pueden aparecer números. Por ejemplo:

8 7 5 6 0

Además de hallar las combinaciones posibles y el número de mayor valor, los alumnos pueden buscar el de menor valor, los números pares, los nones, los divisibles entre 5, entre 3, etcétera.

11

Dando tumbos

Tema 2: Dibujos y trazos geométricos

Propósitos Contenidos Practicar trazos geométricos. Desarrollar la imaginación espacial. Utilización de la regla graduada, compás y escuadras en la reproducción y trazo de diseños, patrones y figuras geométricas. Familiarización con el vocabulario y los trazos geométricos. Cálculo de áreas. Juego de geometría, una caja en forma de cubo y colores.

Material

Organice al grupo en equipos de cinco integrantes y dibuje en el pizarrón la figura que se muestra en el planteamiento del problema. Explique a sus alumnos que la actividad consiste en encontrar y colorear diseños geométricos. Luego plantee el siguiente problema:

Hay que girar y trasladar una caja en forma de cubo de tal forma que en el primer movimiento la arista DC quede en la parte superior, en el segundo quede a la derecha, luego abajo, después a la izquierda y así sucesivamente. Observen la trayectoria que sigue el punto B en cada movimiento. Dibujen la trayectoria y remárquenla con color. Comparen las figuras que obtuvieron.

C B

Hecho en México

Hecho en México

1

B

Hecho en México

D

A

B

Mientras los estudiantes exploran el problema, observe sus acciones, cuestiónelos sobre la figura que están obteniendo y anímelos a continuar. Una vez que la mayoría haya terminado, confronte las diversas formas de solución.

Una estrategia de solución puede ser que recorten un cuadrado de papel o cartulina para representar la cara de la caja y lo hagan girar sobre una recta marcando con puntos la trayectoria del punto B. Otra estrategia de solución puede ser que los alumnos utilicen directamente escuadra y compás, considerando que todas las trayectorias están formadas por arcos de circunferencia debido a que la caja gira en todos los casos en función de una de sus aristas.

C B

D

Lo importante es considerar las soluciones que aporten los estudiantes, sólo a partir de ellas introduzca los términos geométricos apropiados tales como circunferencia, centro, radio, ángulo, arista, puntos u otros que surjan.

Una vez obtenida la figura básica al trasladar el punto B, dibújela en el pizarrón y pida a los estudiantes que la reproduzcan varias veces en su cuaderno sobre una línea recta utilizando su juego geométrico y la coloreen a su gusto. Cuando la mayoría haya terminado pida que algunos estudiantes pasen al frente a mostrar su diseño y comenten cómo obtuvieron la figura.

2

12

Hecho en México

A

Un ejemplo de estrategia de reproducción del diseño consiste en dibujar varios cuadrados y trazar después convenientemente con el compás los arcos como se muestra: Lo importante es que a partir de las estrategias de reproducción, introduzca y precise la idea de regularidad o patrón geométrico, y que confronte las diversas maneras de utilizar las escuadras y el compás.

3

Una vez clarificada la idea de patrón o de regularidad geométrica escriba en el pizarrón este problema:

Suponiendo que la caja siguiera dando tumbos en línea recta, ¿en qué posición quedará el letrero de la caja en el décimo tumbo? ¿Y en el centésimo tumbo? ¿Y en el milésimo primer tumbo?

Indíqueles que individualmente intenten resolver el problema de la manera que quieran y después comparen y comenten sus resultados en el equipo. Finalmente deben elegir el procedimiento que consideraron más adecuado. Cuando la mayoría haya terminado, un representante de cada equipo pasará al frente a explicar su estrategia de solución. Por ejemplo, un equipo pudo haber observado que en las diferentes orientaciones del letrero existe una regularidad numérica: el letrero está a la derecha en los tumbos 2, 6, 10...

+ - [ = + - [ = + 1 2 3 4 5 6 7 8 9 10

Otro equipo pudo haber representado la regularidad utilizando los puntos cardinales:

N 1

E 2

S 3

O 4

N 5

E 6

S 7

O 8

N 9

E 10

De tal manera que para saber la posición del décimo tumbo de la caja basta dividir 10 entre cuatro y ver el residuo, con lo que se determina que 10 es múltiplo de cuatro más dos, y por tanto el letrero está a la derecha.

Hecho en México

En ambas estrategias se puede apreciar que cuando el letrero está a la derecha aparecen múltiplos de cuatro más dos: 2, 6, 10... Mientras que cuando el letrero está a la izquierda aparecen múltiplos de cuatro: 4, 8, 12...

Hecho en México

4

Pida a los alumnos que calculen el área de la figura básica que se obtiene en la actividad 2.

V ARIANTES

Dependiendo del tiempo y las condiciones del grupo, proponga a los alumnos otras variantes de estas actividades aumentando el nivel de complejidad. 1. ¿Qué camino sigue el punto medio de la arista AB? Hagan lo mismo que en las actividades 1, 2, 3 y 4. 2. ¿Qué camino sigue el centro de la cara ABCD? Hagan lo mismo que en las actividades 1, 2, 3 y 4. 3. Construyan un pentágono regular. Investiguen la trayectoria que describe el punto medio de uno de sus lados al rotarla a lo largo de una línea recta.

13

¿Qué tan cerca?

Tema 3: Números naturales: multiplicación

Propósitos Enriquecer el significado de los números y sus operaciones. Utilizar la calculadora como auxiliar en la resolución de problemas y practicar el cálculo mental y la estimación de resultados. Practicar la estimación, el cálculo mental de resultados y los algoritmos, así como el uso de la calculadora. Calculadora.

Contenidos Material

La actividad se realiza entre pares de equipos de cuatro alumnos cada uno. Solicite a dos alumnos (A y B), de dos equipos, que pasen al frente con su calculadora. Después explique la actividad.

A propone a B que estime el resultado de una multiplicación de cantidades de dos dígitos y que la anote en el pizarrón; por ejemplo 18 x 73. Mientras B hace su estimación, A resuelve con la calculadora la operación (18 x 73 = 1 314). Si, por ejemplo, B considera que el resultado es 1 400, A efectúa con la calculadora la resta 1 400 – 1 314 = 86; esta diferencia se traduce en puntos a favor de A, quien propuso la operación. Enseguida se invierten los papeles, es decir, ahora es B quien propone una multiplicación y A quien lleva a cabo la estimación; en este caso la diferencia entre el resultado exacto de la multiplicación propuesta y la estimación se considerará como puntos a favor de B. Después de que cada equipo proponga cinco operaciones, gana el que obtiene más puntos. Una vez ejemplificada la actividad, los alumnos la realizarán por pares de equipos (uno contra otro).

1

Al inicio del juego las estimaciones de los alumnos estarán alejadas del resultado exacto, pero seguramente en el transcurso del juego afinarán sus estrategias para estimar. Para hacer sistemático el desarrollo de la estimación pregunte a un alumno o al equipo cómo procedió. Si lo considera conveniente, primero los miembros de cada equipo pueden comentar entre sí sus estrategias y después los equipos que se enfrentan pueden comparar sus procedimientos. Posteriormente los equipos pueden comentar con todo el grupo la o las estrategias que siguieron para hacer su estimación; algunas estrategias posibles son: Primero se redondea y luego se multiplica, es decir: 18 x 73 ≈ 20 x 70 = 1 400 Primero se redondea, se opera y luego se compensa; esto es: 18 x 73 ≈ 20 x 70 = 1 400; 1 400 + 18 = 1 418. Agregan 18 porque disminuyen en 3 al 73 y aumentan sólo en 2 al 18.

Organice al grupo en equipos y comente que para esta actividad también se requiere una calculadora. Aclare que se enfrentarán pares de equipos. Explique:

Los equipos van a hacer estimaciones combinadas de resultados de multiplicaciones, sumas y restas. El equipo que proponga las operaciones debe anotar la cadena de operaciones, por ejemplo: 23 + 78 x 37, o bien 23 – 78 x 37. El equipo que propuso las operaciones anotará como puntos a su favor la diferencia entre el resultado exacto y el estimado por el equipo contrario. Después de cinco rondas, gana el equipo que obtiene más puntos.

2

14

Al igual que en la actividad 1, es conveniente que observe y cuestione a los equipos o alumnos para que expliquen los procedimientos utilizados para estimar. Seguramente para estimar la cadena 23 + 78 x 37 algún equipo procederá como sigue: 23 + 78 x 37 ≈ 20 + 80 x 30 = 100 x 30 = 3 000 También sucederá que una vez hecha la estimación se proceda a comprobar el resultado utilizando una calculadora que respete la jerarquía de las operaciones; se obtendrá: 23 + 78 x 37 = 2 909 Esta situación puede aprovecharse para mostrar la necesidad de usar los paréntesis a fin de que las expresiones no se presten a diferentes interpretaciones, de manera que la operación se escriba (23 + 78) x 37, para indicar que primero debe hacerse la suma, o bien 23 + (78 x 37) si se quiere hacer primero la multiplicación. Algunos alumnos pueden estimar 23 + (78 x 37) como se indica a continuación. Redondean todas las cantidades y luego operan: 23 + (37 x 78) ≈ 20 + (40 x 80) = 3 220 En otros equipos sólo redondean los números que intervienen en la multiplicación: 23 + (37 x 78) ≈ 23 + (40 x 80) = 3 223 En otros equipos redondean a cantidades que pueden operarse mentalmente: 23 + (37 x 78) ≈ 23 + (35 x 80) = 23 + (2 800) = 2 823 Comente que para realizar esta actividad utilizarán la calculadora y que de nueva cuenta van a trabajar entre pares de equipos; después explique:

Un equipo propone un número terminado en ceros, por ejemplo, 1300. El otro equipo debe estimar una multiplicación de dos o de tres factores de manera que al efectuar las operaciones el resultado se aproxime al número dado. La diferencia entre el número dado y el resultado de las multiplicaciones se adjudica como puntos a favor al equipo que propuso el número.

3

Para realizar esta actividad, los alumnos pueden utilizar diferentes estrategias; por ejemplo, para 1300 es posible que se den soluciones como las siguientes: 1 300 ≈ 700 x 2 1 300 ≈ 600 x 2 1 300 ≈ 800 x 2 1 300 ≈ 10 x 10 x 10 1 300 ≈ 100 x 13 En el desarrollo de esta actividad los alumnos se darán cuenta de que siempre es posible encontrar factores que den el resultado exacto. En el caso del ejemplo, pueden obtenerse a partir de multiplicaciones como las siguientes: 1 300 = 100 x 13 1 300 = 10 x 10 x 13

V ARIANTES

Las actividades se realizan entre pares de equipos: 1. Un equipo propone multiplicaciones como 23 x 45 x 72 y el otro equipo hace la estimación del producto. 2. Un equipo propone multiplicaciones como (23 + 36) x (45 + 72) y el otro equipo hace la estimación. 3. Un equipo dice: al multiplicar 27 por otro número resultó 950, ¿qué número es el que multipliqué por 27? En cada una de las variantes, la diferencia entre el resultado exacto y el estimado se anotan como puntos para aquel equipo que haya propuesto la operación.

15

Múltiplos y divisores

Tema 4: Números naturales: división, múltiplos y divisores

Propósitos Contenidos Material Enriquecer el significado de los números naturales. Uso de la calculadora. Problemas para que los alumnos exploren la relación entre múltiplos y divisores. *Calculadora, cuadrados de 20 cm x 20 cm, rectángulos de 20 cm x 2 cm, cuadrados de 2 cm x 2 cm y rectángulos de 18 cm x 2 cm.

1

Organice el grupo en parejas y después explique la siguiente situación:

a) Representen con el material cantidades de tres cifras y dos cifras como las siguientes: 345, 178, 99, 38, 36, 17, 72..., como se indica: 345 72

b) Utilizando rectángulos de 9 cm x 1 cm, traten de cubrir los cuadrados, rectángulos y cuadrados pequeños que representa cada número; por ejemplo, el número 72 puede cubrirse así: para cubrir las decenas, se utilizan 7 rectángulos de 9 cm x 1 cm, con lo cual restan 7 cuadritos para llegar al número 70; utilizando otro rectángulo de 9 cm x 1 cm se completan las decenas hasta 70, y sobran 2 cuadritos. En consecuencia, el número 72 se cubre con 8 rectángulos de 9 cm x 1 cm. ¿Qué clase de números se pueden cubrir con los rectángulos de 9 cm x 1 cm? Encuentren una regla que les permita decir cuándo un número se puede cubrir sin necesidad de representarlo con material.

La idea central es que los alumnos observen que al cubrir una centena, ésta siempre se puede cubrir con 11 rectángulos de 9 cm x 1cm y sobra un cuadrito; asimismo al cubrir una decena también sobra un cuadrito. Lo anterior llevará a los alumnos a tomar en cuenta el número de cuadritos que sobran y ver si estos pueden ser cubiertos con los rectángulos de 9 cm x 1 cm; por ejemplo, al cubrir con rectángulos el número 345, sobran 3 cuadritos (uno de cada centena); 4 cuadritos (uno de cada decena) y 5 cuadritos, lo que hace un total de 12 cuadritos. De estos sólo se pueden cubrir 9, por lo que 345 no se puede cubrir con los rectángulos de 9 cm x 1 cm. Proponga varios números y solicite a los alumnos que hagan un registro de aquellos que se pueden cubrir, de esta manera al analizarlos podrán responder a la última pregunta. Es posible que algunos alumnos consideren que los números que se pueden cubrir son los múltiplos de 3. Para mostrar que no es cierto, solicite que propongan varios múltiplos de 3 para que observen que esto no siempre es correcto, aunque sí sucede que todo número que es divisible entre 9 también es divisible entre 3. Finalmente, si es que los alumnos no pueden expresar la regla que permite saber cuándo un número es divisible entre 9, oriéntelos para que lo hagan entre todo el grupo. El mismo problema puede plantearse para que los alumnos encuentren la regla de divisibilidad entre 3, con la variante siguiente: determinar qué clase de números pueden cubrirse con rectángulos de 3 cm x 1 cm. Organice al grupo en equipos de cuatro alumnos. Comente que van a utilizar una calculadora para resolver la siguiente situación:

a) Consideren números con cualquier cantidad de dígitos. Dividan a cada uno de estos números entre 2. ¿Qué características tienen los números cuyo residuo es cero al dividirse entre 2? Encuentren una regla que les permita saber cuándo un número es divisible entre 2. b) Consideren números con cualquier cantidad de dígitos. Dividan a cada uno de estos números entre 5. ¿Qué características tienen los números cuyo residuo es cero al dividirse entre 5? Encuentren una regla que les permita saber cuándo un número es divisible entre 5.

* Si no es posible disponer del material, esta actividad puede llevarse a cabo proponiendo que la realicen con dibujos.

2

16

Cuando la mayoría de los equipos haya formulado sus reglas, anótelas en el pizarrón, analice con el grupo las diferencias y en caso necesario verifique si son correctas o no.

3

Con la misma organización de la actividad 2, plantee a los alumnos los siguientes problemas:

a) Si consideran números que son divisibles entre 2 y también son divisibles entre 3, ¿entre qué otro número también son divisibles esos números? b) Si consideran números que son divisibles entre 3 y también son divisibles entre 5, ¿entre qué otro número también son divisibles esos números? c) Si consideran números que son divisibles entre 2, entre 3 y entre 5 respectivamente, ¿entre qué otro número también son divisibles esos números?

Algunos equipos pueden hacer una lista de números que satisfagan las condiciones de cada uno de los incisos y analizarlos después para establecer alguna o algunas conjeturas. Si lo considera conveniente, a los equipos que no propongan una manera sistemática de contestar las preguntas, puede proponerles que elaboren una tabla y en ella iluminen con algún color los números que cumplen con las condiciones. Lo anterior permitirá a los alumnos responder a cada una de las preguntas.

4

Organice al grupo en equipos de tres o cuatro alumnos y a continuación proponga las siguientes preguntas:

En una tabla como la siguiente, anoten los cinco primeros múltiplos (distintos de cero) de 6 y de 8. a) ¿Cuál es el décimo múltiplo de 6? b) ¿Cuál es el décimo múltiplo de 8? c) El 512 es múltiplo de 8, ¿en qué lugar aparecerá en la tabla?, ¿y qué múltiplo de 6 estará colocado en ese mismo lugar? d) El 4 734 es múltiplo de 6, ¿en qué lugar aparecerá en la tabla?, ¿y qué múltiplo de 8 es el que aparecerá en el mismo lugar? e) ¿Cuál es el menor múltiplo común de 6 y de 8? Número consecutivo 1 2 3 4 5 Múltiplos de 6 6 12 Múltiplos de 8 8 16 24 32 40

Para responder las preguntas de los incisos c) y d), los alumnos pueden multiplicar (con la calculadora o con lápiz y papel) el número 8 por otros números hasta dar con el 64, y después multiplicar éste por 6 para obtener el múltiplo que se pide. Otros alumnos se darán cuenta de que si dividen 512 entre 8 obtienen el lugar en el que está colocado ese múltiplo de 8. Puede aprovechar esta situación para hacer la relación entre múltiplo y divisor. La última pregunta lleva a los alumnos a la idea de mínimo común múltiplo. En este momento no se pretende que los alumnos lo obtengan mediante la descomposición en primos, sino a partir de una lista de los múltiplos de cada uno de los números. Si lo considera conveniente, puede proponer otros pares de números que tengan ciertas relaciones; por ejemplo, que uno sea múltiplo del otro, que sean primos relativos, etcétera.

V ARIANTE

Puede proponer a los alumnos la siguiente actividad: Digan si las afirmaciones siguientes son falsas o verdaderas. En cada caso den ejemplos que confirmen o contradigan su respuesta. a) Si un número es divisible entre 2, también es divisible entre 4. b) Si un número es divisible entre 3, también es divisible entre 9. c) Si un número es divisible entre 9, también es divisible entre 3. d) Cualquier múltiplo común de 3 y 5 es divisible entre 15. e) El menor múltiplo común de dos números siempre se obtiene multiplicando dichos números.

17

Geometría con papel

Tema 5: Figuras básicas y ángulos

Propósitos Contenidos Explorar las propiedades de las figuras. Apropiarse gradualmente del vocabulario básico de la geometría. Actividades y problemas que lleven a utilizar las definiciones y a trazar figuras básicas. Uso de escuadras para verificar perpendicularidad y paralelismo. Dos hojas blancas tamaño carta, escuadras y compás (por alumno).

Material

Organice al grupo en equipos de cinco alumnos y coménteles que en esta actividad realizarán trazos geométricos con sólo doblar hojas de papel. Luego escriba el siguiente problema en el pizarrón:

En la primera hoja marquen dos puntos cualesquiera, A y B. Sólo con dobleces construyan un rectángulo cuya base sea el segmento AB.

1

• •

B

A

Se sugiere dejar en completa libertad a los alumnos para que exploren el problema mientras usted observa el trabajo del grupo. Cuando la mayoría haya terminado, pasará al frente un miembro del equipo que haya encontrado el resultado y explicará a sus compañeros cómo procedieron. Cabe esperar más de un procedimiento. Una condición necesaria para esta actividad es saber trazar rectas perpendiculares por medio del doblado de papel. Es posible que algún equipo haya encontrado la siguiente manera de hallar perpendiculares sólo con dobleces:

En este caso puede aprovechar la situación para explicar la idea de perpendicularidad y ángulo recto, así como el uso de escuadras para comprobar que los dobleces que han quedado marcados son perpendiculares. Mientras los alumnos explican los procedimientos que utilizaron es conveniente que pregunte si la figura encontrada es realmente un rectángulo y en su caso comprobarlo (a los alumnos se les puede ocurrir, por ejemplo, hacerlo con ayuda de escuadras). Cabe señalar que este problema tiene muchas soluciones (rectángulos con base AB y diferentes alturas). Éste puede ser el momento para precisar lo que son rectas paralelas, rectángulo y algunas de sus propiedades y características.

2

Para la segunda hoja, indique:

Marquen dos puntos cualesquiera (A y B) y hagan los dobleces necesarios para encontrar un cuadrado cuya diagonal sea el segmento AB.

18

El tratamiento de este problema es el mismo que en la actividad anterior. Existen varias formas para hallar el cuadrado; a continuación se muestra una de ellas:

a) Se dobla el papel hacia atrás para marcar la recta que pasa por A y por B. Las letras deben quedar a la vista.

B A

b) Se dobla hacia atrás por A para marcar una perpendicular.

A

B

c) Se dobla por B para marcar otra perpendicular.

A B

d) Se dobla para marcar la bisectriz del ángulo A. Se deshace este doblez y se marca la bisectriz del ángulo B.

A B

B

e) Se desdobla toda la hoja. El cuadrado cuya diagonal es AB queda marcado como se muestra en la figura.

A

Nótese que esta construcción permite explorar los conceptos bisectriz y diagonal así como algunas propiedades del cuadrado. Es necesario insistir en que las soluciones propuestas por los alumnos (correctas o erróneas) serán las que guíen la introducción de conceptos. Si se proponen otras soluciones habrá que analizar los términos, nociones, conceptos, etcétera, que se pueden retomar o introducir. Los alumnos pueden cometer distintos errores, entre los que se encuentran el trazar a ojo las figuras (lo que sería equivalente, por ejemplo, a trazar paralelas sin un procedimiento que garantice que son paralelas), que los dobleces no se hayan hecho con precisión, o bien que siguiendo incluso una secuencia correcta no se llegue al resultado esperado, en este último caso usted debe animar a sus alumnos a obtener con mayor precisión las figuras.

V ARIANTES

1. Puede solicitar a los alumnos que, con sus instrumentos de geometría, reproduzcan las figuras que encontraron con dobleces. 2. Cada alumno describe por escrito la secuencia que siguió para construir alguna de las figuras y uno de sus compañeros lleva a cabo la construcción siguiendo sus pasos. Debe verificarse que, efectivamente, se obtiene la figura deseada. De no ser así, se debe discutir en dónde estuvo la falla (en las instrucciones o en la ejecución de las mismas).

19

El corredor

Tema 6: Números decimales: Lectura y escritura, orden y comparación, adición y sustracción

Propósitos Enriquecer el significado de los números y sus operaciones mediante la solución de problemas diversos. Utilizar la calculadora como un auxiliar en la solución de problemas. Orden y comparación de números decimales. Acotación de un número decimal entre dos naturales y entre dos números con una cifra decimal. Adición y sustracción de números decimales. Calculadora (opcional).

Contenidos

Material

1

Organice al grupo en equipos de tres alumnos y proponga que resuelvan el siguiente problema:

Carlos es un corredor que entrena diariamente; no sabe de manera exacta cuántos kilómetros corre, pero según cree: el lunes corrió entre 3.4 km y 4.1 km, el martes entre 2.9 km y 3.2 km, y el miércoles entre 3.1 km y 3.8 km. Contesta: a) Si sumas lo que corrió el lunes y el martes, ¿entre qué números estará el total? b) Y si sumas lo que corrió los tres días, ¿entre qué números estará el total?

Dé tiempo suficiente para que los alumnos comenten en equipo, hagan conjeturas, traten de hallar la respuesta a la pregunta a) y encuentren los intervalos que se piden en las dos preguntas. Para la pregunta a), los equipos notarán que existen varias respuestas correctas, debido a los datos con los que se cuenta. Si a algún equipo se le ocurre considerar un número cualquiera, pero que esté entre los intervalos especificados, la respuesta no puede desecharse como incorrecta. Por ejemplo: 3.5 km el lunes + 3 km el martes = 7.5 km O bien: 4 km el lunes + 3.1 km el martes = 7.1 km Ambas pueden ser correctas. Éste será un buen ejemplo de problemas en los cuales la solución no es única. Lo que se debe cuidar es que, cuando los alumnos pasen a confrontar sus resultados, argumenten ante sus compañeros que su respuesta es factible. Para saber entre qué números está el total, posiblemente a uno o más equipos se les ocurra sumar los límites que se están dando y razonen así: Lunes 3.4 km y 4.1 km Martes 2.9 km y 3.2 km Entonces lo que corrió lunes y martes es: (3.4 km + 2.9 km) y (4.1 km + 3.2 km). Esto es, lunes y martes corrió en total una distancia de entre 6.3 km y 7.3 km. Lo cual es correcto.

20

Una forma de validar esta respuesta es comparándola con la de otros equipos. También se pueden dar algunos ejemplos tomando números entre los intervalos señalados para los días lunes y martes. Por ejemplo:

Lunes 3.5 km 3.8 km 4 km Martes 3 km 3.1 km 3 km Suma 6.5 km 6.9 km 7 km

Una vez comentada la solución a la pregunta a), la pregunta b) constituye una extensión de la anterior y es casi seguro que los alumnos propongan que deben sumarse los límites dados para los tres días. La respuesta es: (3.4 km + 2.9 km + 3.1 km) y (4.1 km + 3.2 km + 3.8 km)

Por lo tanto, la distancia que corrió en los tres días está entre: 9.4 km y 11.1 km Durante el desarrollo de esta actividad, además de que el alumno explora, conjetura y argumenta sus respuestas, se practica la acotación de números decimales, así como el orden, la comparación y el algoritmo de la suma de este tipo de números.

Nuevamente, organizados en equipos, invite a sus alumnos a responder la siguiente pregunta, tomando como base los datos de la actividad 1.

¿Entre qué números estará la diferencia de lo que corrió Carlos el lunes con respecto a lo que corrió el martes?

2

Como los alumnos se basan en los datos de la actividad 1 quizá crean que la diferencia está entre: (3.4 km – 2.9 km) y (4.1 km – 3.2 km). Es decir: 0.5 km y 0.9 km. Bastará un ejemplo para demostrar que el razonamiento anterior es falso. Ayude a los alumnos a descubrirlo. Por ejemplo, si suponemos que el lunes corrió 4 km y el martes 3 km (ambos números están en los intervalos de los datos) tenemos que:

Lunes 4 km Martes 3 km Suma 1 km

La diferencia (1 km) no se encuentra en el intervalo de 0.5 km y 0.9 km.

Una vez que se haya demostrado que la respuesta anterior no es correcta, dé más tiempo a los alumnos para que sigan explorando la solución. Un buen razonamiento es el siguiente: si primero supongo que el lunes corrió el menor número de kilómetros (3.4) y el martes el mayor (3.2 km), restando ambos números encontramos la diferencia mínima (0.2 km); de la misma manera, si suponemos que el lunes corrió el mayor número de kilómetros (4.1 km) y el martes el menor (2.9 km) hallamos la diferencia máxima (1.2 km). La diferencia que se pide está entre los números: 0.2 km y 1.2 km.

V ARIANTE

La misma actividad resulta interesante si se piden no sólo sumas y diferencias sino también productos, cocientes y combinación de estas operaciones (que se estudian en los temas 8 y 10). Por ejemplo: A está entre 2.4 y 5.6 B está entre 3.1 y 7.6 Entre qué números están: A + B, A – B, AB.

21

¿Cómo es y dónde está? ¿Cómo es y dónde está?

Tema 7: Representación gráfica

Propósitos Contenidos Material Explorar algunas propiedades de las figuras. Apropiarse gradualmente del vocabulario básico de la geometría. Iniciación al plano cartesiano: coordenadas de un punto en el primer cuadrante. Geoplano y ligas (por alumno).

1

Organice al grupo en parejas o en equipos de cuatro y proponga la siguiente actividad:

Uno de ustedes construirá en su geoplano un polígono irregular de más de cuatro lados e indicará, por escrito, la manera de construir la figura para que, sin verla, su compañero la reproduzca exactamente y en la misma posición en otro geoplano. Al finalizar la construcción compararán ambos polígonos. No se aceptan polígonos donde la liga se cruce, por ejemplo:

Es probable que los alumnos den indicaciones poco precisas, por lo que será difícil que su compañero reproduzca el polígono exactamente. Sin embargo, cabe la posibilidad de que algún alumno utilice expresiones parecidas a las coordenadas para ubicar los vértices del polígono. Por ejemplo: Coloca la liga en el clavo que está arriba y al centro, llévala hasta el clavo que está en el extremo derecho y al centro, etcétera.

Si alguna pareja logra que los polígonos sean iguales o muy semejantes, invítelos a que platiquen ante el grupo cuáles fueron las indicaciones. En esta actividad se promueve la habilidad de comunicación en matemáticas, lo que permite precisar el manejo del lenguaje propio de la geometría.

2

Nuevamente organizados por parejas, indique:

Uno de ustedes construirá en su geoplano un polígono irregular de más de cuatro lados. Escribe las indicaciones para que tu pareja lo reproduzca exactamente y en la misma posición en su geoplano. Gana el que logre el mensaje más breve y que funcione. No se permite decir: El nombre del polígono El número de lados La longitud de los lados La posición de los lados

22

Se pretende que esto lleve al alumno a la localización de puntos en el primer cuadrante del plano cartesiano. Es probable que algunas parejas numeren los puntos y utilicen el número que corresponde a cada punto para describir la posición en que se encuentra la figura.

1 6 2 7 3 8 4 9 5 10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

En este caso haga notar a los alumnos que este procedimiento sería difícil de aplicar si el geoplano fuera más grande, por ejemplo, de 11 x 11 puntos. Otras parejas quizás utilicen expresiones como las siguientes, con un referente fijo o variable: 5 a la derecha 3 a la izquierda Quizá algunos alumnos utilicen lo que saben sobre el plano cartesiano para llevar a cabo esta actividad.

4 3 2 1 0 1 2 3 4

De esta manera darán las indicaciones a partir de las coordenadas que determinan los vértices del polígono; por ejemplo, un vértice está en el punto (2, 4), el siguiente está en el punto (4, 3), el siguiente vértice se localiza en (4,1), etcétera.

4 3 2 1 0 1 2 3 4

Es importante que una vez que los alumnos hayan finalizado la actividad, confronten las diversas estrategias que utilizaron y discutan la funcionalidad de cada una. El propósito fundamental es que lleguen a ubicar los vértices de la figura y tracen la misma utilizando coordenadas cartesianas. Así podrán comparar este recurso con otros que tal vez resulten menos eficientes.

V ARIANTES

Puede proponer a los alumnos las siguientes actividades: 1. Escriban un mensaje con el que se pueda construir un polígono irregular de seis lados. 2. Escriban mensajes con los que no se pueda construir un pentágono irregular. 3. Escriban mensajes que produzcan una línea recta.

23

Magia con decimales Magia con decimales

Tema 8: Números decimales: multiplicación

Propósitos Enriquecer el significado de los números y sus operaciones mediante la solución de problemas diversos. Utilizar la calculadora como un auxiliar en la solución de problemas. Practicar los algoritmos de las operaciones, así como el cálculo y la estimación mental de resultados. Uso de la calculadora y revisión del algoritmo de la multiplicación. Problemas que conducen a multiplicar dos o más decimales, o bien a multiplicaciones combinadas con adiciones y sustracciones. Calculadora (opcional).

Contenidos

Material

1

Organice a los alumnos en parejas y proponga el siguiente problema:

Escriban los números 3, 4, 5, 6, 7, 8, 9, 10 y 11 dentro de las casillas del siguiente cuadrado, de tal manera que la suma de cada columna, renglón o diagonal sea 21.

Puede sugerir a los alumnos que elaboren nueve tarjetas y escriban en ellas los números para que, de esta manera, puedan manipularlos fácilmente, esto ayudará a no estar borrando sus intentos de resolución (las tarjetas pueden ser de cualquier tamaño). Espere un tiempo suficiente para que los alumnos exploren diferentes maneras de colocar los números hasta que den con la solución. Una vez que hayan terminado, los equipos expondrán la solución encontrada al grupo. Algunos arreglos que pueden surgir son los siguientes:

4 11 6 9 7 5 8 3 10 6 5 10 11 7 3 4 9 8 8 9 4 3 7 11 10 5 6

Un análisis cuidadoso de las diferentes respuestas hará que los alumnos observen que en realidad se trata de la misma solución pero rotando los números que están en la superficie del cuadrado. Organizados en parejas, como continuación de la actividad 1 y utilizando como base el cuadrado mágico construido, proponga a los alumnos la siguiente situación:

¿Qué sucederá si sumamos el mismo número a cada uno de los números de un cuadrado mágico? Tomemos como ejemplo el cuadrado que ya construimos.

10 5 6 3 7 11 8 9 4

2

24

(Sumando 2)

(Sumando 5)

15 10 11 8 12 16 13 14 9

(Sumando 10)

20 15 16 13 17 21 18 19 14

Deje que los alumnos trabajen y descubran qué pasa. Lo más probable es que, para explorar, los alumnos hayan elegido sumar números naturales y hayan obtenido cuadrados como los siguientes:

12 7 8

5 9 13

10 11 6

Se espera que los estudiantes observen que se genera otro cuadrado mágico. Será interesante que analicen cuál es la suma del nuevo cuadrado y qué relación guarda con la suma del cuadrado original.

10.5 3.5 8.5 9.5

Sería ideal que a algún equipo se le hubiera ocurrido sumar un número decimal, por ejemplo 0.5, y que obtengan:

5.5

7.5

6.5 11.5 4.5

Con lo cual ya estaríamos trabajando con los números que queremos tratar en este tema. Si a ningún equipo se le ocurre trabajar con decimales, entonces plantee la posibilidad: ¿El cuadro funcionará también sumando decimales? ¿Podremos generar cuadrados mágicos con números decimales? Dé tiempo para que los alumnos exploren el problema, hagan conjeturas y discutan en grupo qué sucede con los números decimales en este problema. Forme ternas. Los alumnos seguirán explorando la construcción de cuadrados mágicos. Ahora se tomará como base alguno de los cuadrados con números decimales que hayan resultado en la actividad 2. Invite a los alumnos a que investiguen:

¿Qué pasará si multiplicamos por un número decimal cada uno de los números de un cuadrado mágico con decimales?

3

Cada terna escogerá cualquiera de los cuadrados mágicos que hayan surgido en la actividad anterior y también escogerá el número decimal que será el multiplicador. En este proceso se dejará que los alumnos utilicen la calculadora para hacer las multiplicaciones y, en general, las operaciones necesarias; no obstante, se podrá aprovechar también para repasar el algoritmo. Un ejemplo de lo que pueden hacer es el siguiente, que se ha obtenido tomando como base el cuadrado mágico que se ilustra arriba –resultado de sumarle un número decimal (0.5) al cuadrado original de la actividad 2– y multiplicando por 0.2 cada uno de los números.

2.1 1.1 1.3 .7 1.5 2.3 1.7 1.9 .9

En este ejemplo también será interesante averiguar cuál es la suma en el nuevo cuadrado mágico (4.5 en este caso) y qué relación guarda con la suma en el cuadrado del cual se originó (22.5) y con el número que se escogió como multiplicador.

V ARIANTES

1. Organice por parejas a los alumnos. Cada uno debe construir un cuadrado mágico sin que su compañero lo vea. Después cada alumno entrega a su compañero la lista de números utilizados y el cuadrado mágico, en el que sólo ha anotado algunos de ellos, para que su compañero lo complete y resuelva. 2. Después de que hayan estudiado fracciones (tema 16) los alumnos pueden expresar los cuadrados mágicos con decimales como fracciones comunes simplificadas, y de esa manera generar cuadra dos mágicos con fracciones.

25

¿Cuántos ejes? ¿Cuántos ejes?

Tema 9: Simetría axial

Propósitos Explorar las propiedades de las figuras y apropiarse gradualmente del vocabulario básico de la geometría. Practicar los trazos geométricos mediante el uso de instrumentos de dibujo. Determinación y trazado de los ejes de simetría de una figura. Geoplano, ligas y espejo por cada equipo.

Contenidos Material

Organice a los alumnos en cuatro equipos. A manera de ejemplo, formen en el geoplano un triángulo con un solo eje de simetría y señalen el eje. Enseguida plantee una de las siguientes actividades a cada equipo.

Formen, en el geoplano: a) Triángulos distintos que tengan sólo un eje de simetría. b) Cuadriláteros distintos que tengan sólo un eje de simetría. c) Pentágonos distintos que tengan sólo un eje de simetría. d) Hexágonos distintos que tengan sólo un eje de simetría. Después digan qué características tienen esas figuras. Pida que se busque el mayor número posible de figuras con esas características. Ganará el equipo que lo consiga.

1

El problema a) es el más sencillo, y seguramente la mayoría de los equipos trazarán triángulos isósceles acutángulos. Oriéntelos y anímelos para que encuentren triángulos rectángulos u obtusángulos que tengan sólo un eje de simetría. En el problema b) los alumnos tendrán algunas dificultades para encontrar cuadriláteros con sólo un eje de simetría. Algunos equipos, al azar, encontrarán que los trapecios isósceles cumplen con esa propiedad. Otros equipos quizás encuentren que los papalotes también cumplen con la condición. Es poco probable que los alumnos descubran cuadriláteros cóncavos con un eje de simetría. Propicie una actitud de búsqueda para que los encuentren. Así puede sugerirles que, una vez construida una determinada figura en el geoplano, coloquen el espejo de manera que observen que la figura es simétrica con respecto a la línea donde se coloca el espejo; esto ayudará a los alumnos a comprobar si la figura tiene un eje de simetría. A la derecha se muestran tres cuadriláteros que tienen un eje de simetría. Si los alumnos han encontrado los tres tipos de cuadrilátero con un eje de simetría, es posible que encuentren alguna estrategia para construir pentágonos y hexágonos con un eje de simetría. Lo importante es que organice una discusión entre los equipos en la que se comente la estrategia seguida para construir figuras con sólo un eje de simetría. Las figuras que se muestran a continuación son pentágonos y hexágonos que tienen un eje de simetría.

26

Es importante que organice una discusión acerca de las propiedades de los triángulos, cuadriláteros, pentágonos y hexágonos que cumplen con la condición (de tener un solo eje de simetría); por ejemplo: igualdad de lados, paralelismo, ángulos.

2

Indique a los alumnos que para resolver los siguientes problemas van a utilizar el geoplano. En el pizarrón anote:

Construyan en el geoplano, al menos: a) Cuatro cuadriláteros que tengan sólo dos ejes de simetría. Después digan qué características tienen esos cuadriláteros. b) Cuatro hexágonos que tengan dos ejes de simetría. Después digan qué características tienen esos hexágonos. c) Cuatro octágonos que tengan dos ejes de simetría. Después digan qué características tienen esos octágonos.

Aunque los alumnos hayan podido resolver los problemas de la actividad 1, algunos equipos tratarán por ensayo de encontrar los cuadriláteros que tengan dos ejes de simetría. Como una manera de ayudar a estos alumnos se les puede sugerir que utilicen el espejo, el cual les permitirá determinar si la figura es simétrica. Algunos equipos tratarán de encontrar cuadriláteros cóncavos que tienen dos ejes de simetría. Esto puede dar lugar a que los alumnos descubran que no hay cuadriláteros cóncavos con dos ejes de simetría. Si observa que los alumnos enfrentan dificultades para encontrar hexágonos y octágonos con dos ejes de simetría, puede sugerir que tomen como punto de partida figuras, como el rectángulo y rombo, para que a partir de ellas construyan los hexágonos u octágonos con dos ejes. A continuación se ilustra cómo se puede proceder:

A

A

En el caso del primer hexágono se trazó primero un rombo; para determinar los cuatro puntos que no están sobre el perímetro del rombo se tomó un punto cualquiera y luego se colocó perpendicularmente el espejo sobre los dos ejes de simetría. Para construir el segundo hexágono se trazó un rectángulo y luego se procedió como en el primer caso. La construcción de los octágonos con dos ejes de simetría se hizo mediante el mismo proceso indicado anteriormente. Las siguientes figuras son algunas de las que se pueden obtener.

V ARIANTES

Puede proponer a los alumnos las siguientes actividades: 1. Encuentren al menos dos eneágonos distintos que tengan sólo un eje de simetría. 2. Tracen con regla y compás las figuras construidas en las actividades 1 y 2.

27

¿Cuánto sobra?

Tema 10: Problemas de división

Propósitos Enriquecer el significado de los números y sus operaciones mediante la solución de problemas diversos. Utilizar la calculadora como un auxiliar en la solución de problemas. Practicar algoritmos de las operaciones, así como el cálculo y la estimación mental de resultados. Problemas que conducen a una división con residuo. Problemas que requieren de un resultado decimal exacto o aproximado. Práctica de la división entre números naturales. Calculadora.*

Contenidos

Material

1

Organice a los alumnos en equipos y propóngales el siguiente problema:

Encuentren 10 divisiones que tengan como residuo 43.

Es probable que algunos alumnos usen su calculadora para resolver este problema, pero pronto se darán cuenta de que no es posible, ya que la máquina calcula el resultado con decimales y en ningún momento aparece el residuo. De esta manera los alumnos empezarán a explorar el problema usando papel y lápiz y resolviendo diferentes divisiones para ver si el residuo es 43. En esa búsqueda al tanteo el estudiante se dará cuenta de que una primera condición para hallar las soluciones al problema es que el divisor debe ser mayor que el residuo. Cuando lo considere pertinente solicite a varios equipos que escriban una o más de sus divisiones en el pizarrón: 21 72 2 57 1 240 100 243 27 1 987 100 097 043 43 43 Pida a los equipos que expliquen ante el grupo cómo hallaron las divisiones tomando en cuenta la condición pedida. Un análisis del algoritmo de la división posiblemente los lleve a saber que si: c b a entonces: a = bc + r r Es decir, multiplicando dos números (que serán el cociente y el divisor) y sumando 43 (residuo) a su producto, obtenemos el dividendo. Por ejemplo: 57 x 21 = 1 197 1 197 + 43 = 1 240 Por lo que la división de 1 240 entre 57 —o entre 21— dará como residuo 43. Nótese que en la resolución de este problema el alumno repasará los algoritmos de la adición, la sustracción, la multiplicación y la división. También será necesario aclarar a qué se le llama dividendo, divisor, cociente y residuo, así como sus significados y la relación entre ellos: divisor x cociente + residuo = dividendo 1 44 87 43

2

Proponga a los alumnos el siguiente problema:

Usen la calculadora para encontrar el cociente entero y el residuo de las siguientes divisiones: 98 196 819 3 496 ÷ ÷ ÷ ÷ 35 39 115 47

* En caso de que algún alumno cuente con una calculadora de las que dan el cociente y el residuo, se le pedirá que no ocupe esas funciones para solucionar el problema.

28

Acláreles que no se permitirá hacer el algoritmo tradicional con papel y lápiz, sino que sólo usarán su calculadora y que deberán lograr que el residuo aparezca en la pantalla haciendo las operaciones necesarias. Deje que los alumnos traten de hallar la solución explorando y conjeturando hasta que se den cuenta de la relación siguiente: dividendo = divisor x cociente + residuo Y que, despejando el residuo: residuo = dividendo – cociente x divisor Es decir, basta con multiplicar el divisor por la parte entera del cociente y restar ese producto del dividendo para obtener el residuo. Por ejemplo: En la calculadora 98 ÷ 35 da como resultado 2.8; la parte entera es 2, por lo tanto: residuo = 98 – (35 x 2) residuo = 98 – 70 residuo = 28 Ésta no es la única forma de encontrar la solución; quizá algún equipo haya tenido la experiencia de tratar la división como una sucesión de restas; en este caso, otra forma de saber el residuo es restando 35 de 98, volver a restar 35 del resultado obtenido, y así sucesivamente hasta que quede un número menor que 35. Ese número es el residuo. 98 – 35 = 63 63 – 35 = 28 El número de veces que se restó 35 es, precisamente, la parte entera del cociente (en este caso, 2). 2.8 35 98 280 00

Otra forma de resolver el problema es la siguiente: se hace la división con el algoritmo tradicional sólo para ver la relación que guarda el residuo con la parte decimal del cociente. Al hacer la división con papel y lápiz de 98 ÷ 35 se tiene: ¿De dónde resultó el .8? El .8 es el resultado de dividir el residuo entre 35: 28 ÷ 35 = .8

Por lo que el residuo se puede calcular multiplicando la parte decimal del cociente por el divisor: 28 = .8 x 35 No es necesario volver a teclear la parte decimal, basta con que una vez que se tenga el cociente se reste la parte entera y lo que queda se multiplique por el divisor. Cabe aclarar que el inconveniente de esta última solución es que si el cociente tiene más decimales que los que caben en la pantalla ( por ejemplo 1 ÷ 3 = 0.333...), es posible que la calculadora no guarde todos en la memoria y entonces se obtenga una aproximación del residuo, pero no el residuo exacto (esto no pasa si la parte decimal sale completa en la pantalla). Este problema permite a los alumnos el análisis de la división, el repaso de su algoritmo y el uso de la calculadora, así como explorar la relación entre las operaciones y repasar los nombres de los elementos de la división. No desaproveche la oportunidad de reafirmar los contenidos pertinentes.

V ARIANTE

Una variante para la actividad 2 consiste en pedir el cociente hasta décimos y el residuo. Por ejemplo: Calculen el residuo al dividir 394 ÷ 37, una vez que el resultado se aproxima a décimos (con la calculadora). Veamos lo que pasa al hacer la división con papel y lápiz (sólo con objeto de analizar el residuo, pues el problema pide que se realice con calculadora): El residuo no es 18, pues, fijándonos en la posición que ocupa el 18, realmente equivale a 1 entero 8 décimos. 10.6 37 394 0240 018

29

Listones y varas

Tema 11: Fracciones y porcentajes

Propósito Contenidos Material Enriquecer el significado de los números y sus operaciones mediante la solución de problemas muy variados. Revisión de los usos y significados de las fracciones en distintos contextos. Operaciones y problemas. Un carrete de cuerda y una cartulina (por grupo, para la actividad 2).

1

Proponga el siguiente problema para que los alumnos lo resuelvan individualmente:

Se tienen tres pizzas para cinco niños. ¿Qué parte de pizza le toca a cada niño si se debe repartir toda la pizza y a cada uno le debe tocar lo mismo?

Los alumnos han resuelto problemas de este tipo en la escuela primaria, por lo que se espera que no encuentren ninguna dificultad. Una vez que lo considere pertinente invite a varios alumnos a que digan el resultado al que llegaron y sobre todo a que justifiquen y validen su respuesta ante el grupo. Algunos alumnos procederán partiendo cada pizza en mitades. Darán una mitad a cada niño, la sexta mitad la dividirán en cinco partes y le darán la quinta parte de esa mitad a cada niño. A cada niño 1/2 + 1/10 de pizza. Probablemente otros alumnos encuentren la solución partiendo cada pizza en cinco partes y dando una parte de cada pizza a cada uno, por lo que a cada niño le tocan 1/5 + 1/5 + 1/5 de pizza. También es probable que algunos alumnos sepan de inmediato que a cada niño le tocan 3/5 de pizza. De cualquier manera, lo interesante será que en la validación de resultados se verifiquen las equivalencias de las respuestas correctas, por ejemplo: Un medio más un quinto de un medio equivale a tres quintos. Pregunte: ¿Qué es un quinto de un medio? 1 1 3 + = Y repase la suma de fracciones al comprobar que: 2 10 5 Organice al grupo en equipos de cuatro y plantee el siguiente problema:

Cinco pedazos de listón del mismo tamaño unidos cabo a cabo miden tres varas. ¿Cuánto mide un solo pedazo de listón?

2

Si algún alumno pregunta cuánto mide una vara, indíquele que esa información no es necesaria, puesto que deben sacar la medida de un pedazo de listón tomando como unidad de medida la vara. Mientras los equipos tratan de resolver el problema recorra el salón para observar el trabajo. Es probable que los alumnos inicien la solución al problema por medio de estimaciones, usando expresiones como: Un listón es más o menos tres cuartos de una vara. Un listón mide un poco más de la mitad de una vara. En estos casos pida que sean más precisos en sus respuestas.

30

A aquellos equipos que lo soliciten propor