Temas Variados / Los números Primos

Los números Primos

Composiciones de Colegio: Los números Primos
Ensayos de Calidad, Tareas, Monografias - busque más de 2.192.000+ documentos.

Enviado por:  ewilfredo91  06 julio 2013
Tags: 
Palabras: 1631   |   Páginas: 7
Views: 87

En matemáticas, un número primo es un número natural mayor que 1 que tiene únicamente dos divisores distintos: él mismo y el 1. Los números primos se contraponen así a los compuestos, que son aquellos que tienen algún divisor natural aparte de sí mismos y del 1. El número 1, por convenio, no se considera ni primo ni compuesto.

Los números primos menores que cien son los siguientes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97.1

La propiedad de ser primo se denomina primalidad. A veces se habla de número primo impar para referirse a cualquier número primo mayor que 2, ya que éste es el único número primo par. A veces se denota el conjunto de todos los números primos por .

El estudio de los números primos es una parte importante de la teoría de números, la rama de las matemáticas que comprende el estudio de los números enteros. Los números primos están presentes en algunas conjeturas centenarias tales como la hipótesis de Riemann y la conjetura de Goldbach. La distribución de los números primos es un tema recurrente de investigación en la teoría de números: si se consideran números individuales, los primos parecen estar distribuidos aleatoriamente, pero la distribución «global» de los números primos sigue leyes bien definidas.

Matemáticas anteriores a la Antigua Grecia

Las muescas presentes en el hueso de Ishango, que data de hace más de 20.000 años (anterior por tanto a la aparición de la escritura) y que fue hallado por el arqueólogo Jean de Heinzelin de Braucourt,2 parecen aislar cuatro números primos: 11, 13, 17 y 19. Algunos arqueólogos interpretan este hecho como la prueba del conocimiento de los números primos. Con todo, existen muy pocos hallazgos que permitan discernir los conocimientos que tenía realmente el hombre de aquella época.3

Numerosas tablillas de arcilla seca atribuidas a las civilizaciones que se fueron sucediendo en Mesopotamia a lo largo del II milenio a.C. muestran la resolución de prob

lemas aritméticos y atestiguan los conocimientos de la época. Los cálculos requerían conocer los inversos de los naturales, que también se han hallado en tablillas.4 En el sistema sexagesimal que empleaban los babilonios para escribir los números, los inversos de los divisores de potencias de 60 (números regulares) se calculan fácilmente; por ejemplo, dividir entre 24 equivale a multiplicar por 150 (2·60+30) y correr la coma sexagesimal dos lugares. El conocimiento matemático de los babilonios necesitaba una sólida comprensión de la multiplicación, la división y la factorización de los naturales.

En las matemáticas egipcias, el cálculo de fracciones requería conocimientos sobre las operaciones, la división de naturales y la factorización. Los egipcios sólo operaban con las llamadas fracciones egipcias, suma de fracciones unitarias, es decir, aquellas cuyo numerador es 1, como , por lo que las fracciones de numerador distinto de 1 se escribían como suma de inversos de naturales, a ser ...



Suscríbase a ClubEnsayos

Suscríbase a ClubEnsayos - busque más de 2.192.000+ documentos