ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

ESCALAS dibujo técnico


Enviado por   •  20 de Abril de 2015  •  Tesis  •  7.017 Palabras (29 Páginas)  •  537 Visitas

Página 1 de 29

ESCALAS dibujo técnico

DEFINICIÓN

La representación de objetos a su tamaño natural no es posible cuando éstos son muy grandes o cuando son muy pequeños. En el primer caso, porque requerirían formatos de dimensiones poco manejables y en el segundo, porque faltaría claridad en la definición de los mismos.

Esta problemática la resuelve la ESCALA, aplicando la ampliación o reducción necesarias en cada caso para que los objetos queden claramente representados en el plano del dibujo.

Se define la ESCALA como la relación entre la dimensión dibujada respecto de su dimensión real, esto es:

E = dibujo / realidad

Si el numerador de esta fracción es mayor que el denominador, se trata de una escala de ampliación, y será de reducción en caso contrario. La escala 1:1 corresponde a un objeto dibujado a su tamaño real (escala natural).

CLASIFICACIÓN

Según la aplicación en el dibujo, se establecen tres tipos:

• Escala de ampliación: cuando las dimensiones del dibujo son mayores a las del objeto real.

• Escala natural: cuando las dimensiones del objeto y su representación en el plano son iguales.

• Escala de reducción: cuando las dimensiones del dibujo son menores las dimensiones del objeto real.

EL ESCALÍMETRO:

Un Escalímetro es una regla especial cuya sección transversal tiene forma prismática con el objeto de contener diferentes escalas en la misma regla. Se emplea frecuentemente para medir en dibujos que contienen diversas escalas. En su borde contiene un rango con escalas calibradas y basta con girar sobre su eje longitudinal para ver la escala apropiada.

CUADRANTES ESPECIALES

La forma habitual Más del Escalímetro Es La De Una regla de 30 cm deLongitud, con section estrellada de 6 Facetas o caras. Cada uña de ESTASFacetas va graduada con escalas Diferentes, Que habitualmente hijo:1

: 100, 1: 200, 1: 250, 1: 300, 1: 400, 1: 500

Estás Escalas hijo Validas IGUALMENTE párr Valores Que resulten demultiplicarlas o dividirlas Por 10, Asi Por ejemplo, la escala 1: 300 es utilizableen planos una escala 1:30 ó 1: 3000, Entre Otras.

ABASTECIMIENTO DE PLANOS

es el método que se utiliza para representar la forma exacta de un modelo por medio de dos o más vistas sobre planos que forman ángulos rectos entre sí. Una proyección es ortogonal cuando su dirección es perpendicular al plano de proyección. La proyección se obtiene por la intersección de las perpendiculares trazadas desde el modelo sobre los planos de proyección.

Los puntos de intersección entre las rectas y el plano, constituyen proyecciones de los diferentes puntos del cuerpo, y al ser unidos mediante líneas, nos darán la proyección o imagen del mencionado cuerpo. Las rectas que van del foco al plano de proyección se denominan planos proyectantes. Cuando el foco o punto de origen está situado en el infinito, las proyectantes serán líneas paralelas, por lo cual las proyecciones así originadas reciben el nombre de cilíndricas. Esas líneas proyectantes pueden incidir en el plano de proyección en forma oblicua o perpendicular.

El sistema diédrico es una proyección ortogonal en la que se utilizan dos planos de proyección, uno horizontal (P.H.) y otro vertical (P.V.) que forman un ángulo diedro recto. Las proyecciones toman su nombre de estos dos planos, llamándose proyección horizontal a la que se encuentra en dicho plano, y proyección vertical a la que se halla en el plano del mismo nombre.

Como los dos planos se extienden al infinito y dividen el espacio en cuatro ángulos diedros, enumerados a partir del superior, se denominan cuadrantes. La intersección de los dos planos se denominan línea de tierra y se representa por las letras LT, XY o también dos guiones, uno a cada extremo.

Se ha señalado que el objetivo de la geometría descriptiva es representar sobre un plano figuras del espacio. Sin embargo en el sistema diédrico, se mencionan dos planos de proyección. Para obtener esa condición se recurre al artificio de hacer que el plano vertical gire 90º alrededor de la línea de tierra, hasta que los cuadrantes 1 y 3 se conviertan en ángulos llanos. Así se obtiene un solo plano que sería el papel de dibujo o el pizarrón.

Al reducir los dos planos de proyección a uno solo, éste queda dividido en dos partes por la línea de tierra: la superior corresponderá al plano vertical y la inferior al plano horizontal. También es necesario tener en cuenta que las proyecciones vertical y horizontal de un punto se corresponden mediante una recta perpendicular a la línea de tierra que recibe el nombre de línea de correspondencia.

ÓVALO dibujo técnico

DEFINICIÓN

Es una curva cerrada y plana compuesta por un número par de arcos de circunferencia enlazados entre sí y simétricos respecto sus ejes mayor y menor normales entre sí.

CONSTRUCCIÓN

Trazado de óvalos

Construir un óvalo conociendo el eje mayor.

Primer método.

Dado el eje mayor AB, lo dividimos en tres partes iguales. Por sus divisiones trazamos dos circunferencias O1 y O2 de radio la tercera parte del eje AB, estas se cortan en los puntos O3 y O4.

O1, O2, O3 y O4 son los centros de los cuatro arcos que compondrán el óvalo. Los arcos de centro O1 y O2 tienen como radio la tercera parte del eje mayor y son tangentes a las trazadas con centro en O3 y O4, los puntos de enlace T2, T4, T1 y T3 de las circunferencias O1 Y O2 con O3 y O4 respectivamente están donde los segmentos unión de centros correspondientes corten a las circunferencias de centros O1 y O2. El radio de los arcos de centro O3 y O4 será por tanto la distancia existente entre ellos y sus correspondientes puntos de enlace (O3-T2).

Segundo método.

Dividimos en cuatro partes iguales el eje mayor dado AB obteniendo los centros O1 y O2 de dos de los arcos en sus divisiones intermedias. Con centro en los extremos Ay B dados y radios AO1 y BO2 trazamos dos arcos que se cortan en O3 y O4, centros de los dos arcos restantes. Los puntos de enlace se determinan uniendo los centros O1 y O2 con O3 y O4 y con estos quedan a su vez determinados los radios de los arcos de centros O3 y O4 (O3-T2).

Tercer método.

Dado AB, eje mayor, lo dividimos en cuatro partes obteniendo O1 y O2 en las divisiones más cercanas a A y B. Con centro en el punto medio del eje mayor, trazamos una circunferencia cuyo radio mida la cuarta parte de dicho eje que corta a la mediatriz de AB en O3 Y O4

...

Descargar como (para miembros actualizados)  txt (43 Kb)  
Leer 28 páginas más »
Disponible sólo en Clubensayos.com