Ciencia / Numeros Reales

Numeros Reales

Ensayos y Trabajos: Numeros Reales
Ensayos de Calidad, Tareas, Monografias - busque más de 2.243.000+ documentos.

Enviado por:  alonso.28  09 enero 2014
Tags: 
Palabras: 1638   |   Páginas: 7
Views: 79

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO

Q.F.B

ALGEBRA LINEAL

NUMEROS REALES

SISTEMA DECIMAL

SISTEMA SEXAGESIMAL

1° SEMESTRE SECCION 17

GERARDO ALONSO CHAVEZ

RUBEN VEGA CANO

22 DE OCTUBRE DEL 2013

INDICE

PORTADA…………………………………………………………………………………………… 1

INDICE……………………………………………………………………………………………….. 2

1.1 NUMEROS REALES……………………………………………………………............. 3

1.2 PROPIEDADES DE LOS NUMEROS REALES…………………………………..… 4

1.3 PROPIEDAD DEL DOBLE NEGATIVO…………………………………………..….. 5

1.2.1 SUMA DE LOS NUMEROS REALES………………………………………… 6

1.2.2 RESTAR NUMEROS REALES………………………………………………….. 7

1.2.3 MULTIPLICAR NUMEROS REALES………………………….……………… 7

1.2.4 DIVIDIR NUMEROS REALES……………………………………………….…. 8

2.1 SISTEMA DECIMAL………………………………………………………………….. 9, 10

3.1 SISTEMA SEXAGESIMAL…………………………………………………..……… 11

3.2 OPERACIONES CON NUMEROS SEXAGESIMALES………..………….. 11

3.2.1 SUMA DE NUMEROS SEXAGESIMALES…………………………………. 11

3.2.2 RESTA DE NUMEROS SEXAGESIMALES…………………………………. 12

3.2.3 MULTIPLICACION DE NUMEROS SEXAGESIMALES….……………. 12

3.2.4 DIVICION DE NUMEROS SEXAGESIMALES…………….……………… 13, 14

BIBLIOGRAFIA……………………………………………………………………………….. 15

1.1 LOS NUMEROS REALES

Los números reales son los números que se puede escribir con anotación decimal, incluyendo aquellos que necesitan una expansión decimal infinita. El conjunto de los números reales contiene todos los números enteros, positivos y negativos; todas las fracciones; y todos los números irracionales, aquellos cuyos desarrollos en decimales nunca se repiten.

Subconjunto de los números Reales

1.2 PROPIEDADES DE LOS NUMEROS REALES

Para tener éxito en algebra, debe entender como sumar, restar, multiplicar y dividir números Reales.

Dos números, en la recta numérica, que están a la misma distancia del cero pero en direcciones opuestas se denominan:

Inversos aditivos, opuestos o simétricos uno del ot

ro. Por ejemplo.

3 es el inverso aditivo de -3, y -3 es el inverso aditivo de 3

El numero 0 (cero) es su propio inverso aditivo.

La suma de un número y su inverso aditivo es 0 (cero).

INVERSO ADITIVO

Para cualquier número real de a, su inverso aditivo es –a.

Considere el número -4. Su inverso aditivo es -(-4). Como sabemos que este número debe ser positivo, esto implica que -(-4) = 4. Éste es un ejemplo de la propiedad del doble negativo.

1.3 PROPIEDAD DEL DOBLE NEGATIVO

Para cualquier número real a, -(-a) = a

Por la propiedad del doble negativo, -(-6.9) = 6.9

Valor absoluto

El valor de cualquier número distinto del cero siempre será un nuero positivo, y el valor absoluto de 0 es 0.

Para determinar el valor absoluto de un número real, use la definición siguiente.

La definición de valor absoluto indica que el valor absoluto de cualquier número no negativo, es el mismo, y el valor absoluto de cualquier número negativo es el inverso aditivo (o ...



Suscríbase a ClubEnsayos

Suscríbase a ClubEnsayos - busque más de 2.243.000+ documentos