PRÁCTICA 1. RESISTIVIDAD DE LOS MATERIALES
Enviado por IgnacioROVI • 17 de Octubre de 2019 • Apuntes • 2.197 Palabras (9 Páginas) • 228 Visitas
Universidad Autónoma Metropolitana Unidad Azcapotzalco
DEPARTAMENTO DE ENERGÍA
LICENCIATURA EN INGENIERÍA ELÉCTRICA
LABORATORIO DE ELECTROMAGNETISMO
UEA: 1131083
PRÁCTICA 1. RESISTIVIDAD DE LOS MATERIALES
Fecha: 26-09-2019
Grupo: CEN81
Equipo: 1
Integrantes
Nombre | Matrícula |
Rosas Villanueva Ignacio | 2143001854 |
Santiago Silva Omar | 2142002384 |
Vargas de Lucio Daniel | 2143035770 |
Profesor: Carlos A. Rivera Salamanca
RESISTIVIDAD DE LOS MATERIALES
OBJETIVOS
- Estudiar las características de conducción de varios materiales empleados en electrotecnia.
- Analizar las características no lineales de conducción.
- Estudiar el efecto que la temperatura tiene sobre la conductividad.
MATERIAL UTILIZADO
- 1 fuente de VCD variable.
- 1 juego de puntas banana-caimán.
- 1 multímetro digital. → Marca FLUKE 179
- 1 Puente de Wheatstone.
- 1 flexómetro.
- Cinta aislante.
- 1 diodo
- Resistencias de 460 kΩ, 1 kΩ y 1MΩ.
- 5 puntas banana-banana 16 AWG de 2.2 m de longitud.
MÉTODO EMPLEADO
- Ohmetro – Instrumento que se utiliza para medir resistencia eléctrica.
- Puente de Wheatstone – Instrumento cuyo circuito eléctrico se utiliza para medir resistencias desconocidas.
- Ley de Ohm – A partir de la expresión se hace un despeje de la resistencia para saber su valor.
TEORÍA
Ley de Ohm
En 1827, Georg Simon Ohm publicó su ley (Ley de Ohm). Expresa que la corriente que fluye a través de un conductor metálico a temperaturas constante es proporcional a la diferencia de potencial que hay entre sus extremos del conductor e inversamente proporcional a la resistencia del medio (Ec.1).
[pic 1] | (1) |
Intensidad de corriente [A][pic 2] | |
Diferencia de potencial [V][pic 3] | |
Resistencia [Ω][pic 4] |
Donde:
Resistencia y resistividad
El mismo proceso que permitió a Ohm enunciar su Ley, le llevó a cuantificar la resistencia de un conductor.
La resistencia eléctrica es toda oposición que presentan los materiales al paso de la corriente eléctrica. La unidad de la resistencia en el Sistema Internacional de Unidades (S.I.) es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Su cantidad recíproca es la conductancia medida en Siemens.
[pic 5] | (2) |
Donde:
Conductividad [S][pic 6]
La resistencia de cualquier objeto depende únicamente de su geometría y de su resistividad, por su geometría se entiende a la longitud y el área del objeto. De acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre caída de tensión y la corriente en dicha resistencia (Ec.3).
[pic 7] | (3) |
Resistividad [Ω•m][pic 8] | |
Longitud [m][pic 9] | |
Área o Sección transversal [mm2][pic 10] |
Donde:
Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.
La constante de proporcionalidad ρ (rho) se denomina resistividad y es la resistencia eléctrica específica de cada material para oponerse al paso de una corriente eléctrica. Se mide en ohmios por metros (Ω•m). Su valor describe el comportamiento de un material frente al paso de corriente eléctrica, por lo que da una idea de lo buen o mal conductor que es. Es un parámetro que depende del material con que está fabricado el objeto y de la temperatura a la cual se encuentra sometido. De aquí se deduce que R también depende de la temperatura, esto significa que, dada una temperatura y material, la resistencia es un valor que se mantendrá constante. Por lo que separar la dependencia de la resistencia en las dimensiones y en el tipo de material de un conductor es útil para el cálculo de resistencias. Generalmente la resistividad de los metales aumenta con la temperatura, mientras que la resistividad de los semiconductores disminuye ante el aumento de la temperatura.
DESCRIPCIÓN EXPERIMENTAL
- Se midió con el flexómetro la longitud de una punta banana-banana, después se conectaron las 5 puntas y se aislaron en las terminales de conexión como medida de precaución.
- Se midió el valor de la resistencia del diodo, de las 5 puntas banana-banana conectadas y de las resistencias de 460 kΩ, 1 kΩ y 1MΩ utilizando un óhmetro y un puente de Wheatstone. Los valores obtenidos se muestran en la Tabla 2.
- Se hizo la conexión del circuito mostrado en la Figura 1.
- Utilizando la fuente de voltaje de CD variable se fue aumentando la tensión en pasos de 1V hasta llegar a 20V. En cada paso se midió el valor de la tensión en el diodo y en la resistencia. Las 20 mediciones se repitieron para cada resistencia. Los valores obtenidos se mustran en la Tabla 3,4 y 5.
- Posteriormente utilizando la Ley de Ohm se hizo el cálculo de corriente (I) para cada medición. (Tabla 6).
- Una vez obtenido el valor de la corriente para cada medición se graficaron las características I vs V.
[pic 11]
.
[pic 12]
[pic 13]
[pic 14]
RESULTADOS
Tabla 2 – Medición de resistencia.
Elemento | Puente de Wheatstone | Multímetro Digital |
Resistencia de 1 MΩ | 1 MΩ | 1,065 MΩ |
Resistencia de 100 kΩ | 99,990 kΩ | 100,1 kΩ |
Resistencia de 460 kΩ | 450.500 kΩ | 459,4 kΩ |
Diodo | 10,999 MΩ | 242 kΩ |
11 m de cable 16 AWG | 0,148 Ω | 0,2 Ω |
Tabla 3 - Medición voltajes con Resistencia de 460 kΩ
Voltajes [V] | ||
Fuente (V1) | Diodo (V2) | Resistencia 460 kΩ (V3) |
0,998 | 0,269 | 0,741 |
2,096 | 0,286 | 1,809 |
2,969 | 0,299 | 2,668 |
4,049 | 0,31 | 3,814 |
4,912 | 0,316 | 4,598 |
6,02 | 0,323 | 5,702 |
7,06 | 0,329 | 6,73 |
8,02 | 0,333 | 7,7 |
8,94 | 0,337 | 8,61 |
10,13 | 0,342 | 9,79 |
10,92 | 0,344 | 10,57 |
11,96 | 0,348 | 11,61 |
12,88 | 0,351 | 12,53 |
14,13 | 0,354 | 13,78 |
15,12 | 0,377 | 14,76 |
16,05 | 0,359 | 15,64 |
17,06 | 0,362 | 16,69 |
18,02 | 0,364 | 17,66 |
19,1 | 0,366 | 18,74 |
20,19 | 0,366 | 19,82 |
...