UNA GRAN FUNCIÓN EXPONENCIAL
Enviado por MA'Fernanda Bautista • 26 de Marzo de 2016 • Ensayo • 899 Palabras (4 Páginas) • 319 Visitas
FUNCION EXPONENCIAL
La función exponencial, es conocida formalmente como la función real ex, donde e es el número de Euler, aproximadamente 2.71828...; esta función tiene por dominio de definición el conjunto de los números reales, y tiene la particularidad de que su derivada es la misma función. Se denota equivalentemente como f(x)=ex o exp(x), donde e es la base de los logaritmos naturales y corresponde a la función inversa del logaritmo natural.
En términos mucho más generales, una función real E(x) se dice que es del tipo exponencial en base a si tiene la forma
Siendo a, K ∈ R números reales, con a > 0, a ≠ 1. Así pues, se obtiene un abanico de exponenciales, todas ellas similares, que dependen de la base a que utilicen.1
Se llama función exponencial de base a aquella cuya forma genérica es f (x) = ax, siendo a un número positivo distinto de 1. Por su propia definición, toda función exponencial tiene por dominio de definición el conjunto de los números reales R.
La función exponencial puede considerarse como la inversa de la función logarítmica (ver t36), por cuanto se cumple que:
Propiedades de las funciones exponenciales
Para toda función exponencial de la forma f(x) = ax, se cumplen las siguientes propiedades generales:
La función aplicada al valor cero es siempre igual a 1:
f (0) = a0 = 1.
La función exponencial de 1 es siempre igual a la base:
f (1) = a1 = a.
La función exponencial de una suma de valores es igual al producto de la aplicación de dicha función aplicada a cada valor por separado.
f (x + x?) = ax+x? = ax × ax? = f (x) × f (x?).
La función exponencial de una resta es igual al cociente de su aplicación al minuendo dividida por la función del sustraendo:
f (x - x?) = ax-x? = ax/ax? = f (x)/f (x?)
La función ex
Un caso particularmente interesante de función exponencial es f (x) = ex. El número e, de valor 2,7182818285..., se define matemáticamente como el límite al que tiende la expresión:
(1 + 1/n)n
Cuando el valor de n crece hasta aproximarse al infinito. Este número es la base elegida para los logaritmos naturales o neperianos (ver t34).
La función ex presenta algunas particularidades importantes que refuerzan su interés en las descripciones físicas y matemáticas. Una de ellas es que coincide con su propia derivada (ver t41).
Ecuaciones exponenciales
Se llama ecuación exponencial a aquella en la que la incógnita aparece como exponente. Un ejemplo de ecuación exponencial sería ax = b.
Para resolver estas ecuaciones se suelen utilizar dos métodos alternativos:
Igualación de la base: consiste en aplicar las propiedades de las potencias para lograr que en los dos miembros de la ecuación aparezca una misma base elevada a distintos
...