Metodo de pronosticos administración financiera.
Enviado por darky04 • 12 de Noviembre de 2016 • Práctica o problema • 520 Palabras (3 Páginas) • 456 Visitas
Ejemplos de métodos de pronósticos
Problema
La compañía bob’s hardware store tuvo las sig. Ventas de podadoras a considerar.
1. método simplista
2. pronostica de grafica de tendencia (P.G.T.)
3. promedio móvil (P.M.) a 4 meses
4. promedio móvil ponderado (P.M.P.) respecto a 3:2:1
PERIODO | VENTA REAL |
DIC ‘15 | 12 |
ENE ‘16 | 10 |
FEB ´16 | 12 |
MAR ‘16 | 13 |
ABR ´16 | 16 |
MAY ‘16 | 19 |
JUN ‘16 | 23 |
JUL ‘16 | 26 |
AGO ‘16 | 30 |
SEP ‘16 | 28 |
OCT ‘16 | 18 |
NOV ‘16 | 16 |
DIC ‘16 | ?? |
1. simplista
10% más de dic ‘15
(12)(0.1)= 1.2
12+1.2= 13.2
13.2= 13 podadoras
2. P.G.T.[pic 1]
(16)(0.1)= 1.6
16-1.6= 14.4
14.4= 14 podadoras
3. P.M.
[pic 2]
[pic 3]
=92/4
=23 podadoras
4. P.M.P.
P.M.P= [pic 4]
= 112/6
= 18.6= 19 podadoras
Problema
Una empresa usa suavización exponencial simple con un alfa igual a 0.1 para pronosticar la demanda, el pronóstico para la demanda de febrero 1 fue de 500 unidades, mientras que la demanda real de la semana 8 fue de 450 unidades.
1. pronostique la demanda de febrero 8
2. supóngase que la demanda real de la semana de febrero 8 fue de 505
Pronostique la demanda de febrero 15, continúe hasta la semana de marzo 15. Suponiendo que las demandas subsecuentes fueron de 516, 488, 467, 554, 510 de demanda real.
Tabla de resultados
Semana | Demanda real | Pronostico anterior | Error del pronostico | Corrección | Pronostico nuevo |
Feb 1 | 450 | 500 | -50 | -5 | 495 |
Feb 8 | 505 | 495 | 10 | 1 | 496 |
Feb 15 | 516 | 496 | 20 | 2 | 498 |
Feb 22 | 488 | 498 | -10 | -1 | 497 |
Mar 1 | 467 | 497 | -30 | -3 | 494 |
Mar 8 | 554 | 494 | 60 | 6 | 500 |
Mar 15 | 510 | 500 | 10 | 1 | 501 |
Feb 1
Error del pronóstico= [(demanda real)-(pronostico anterior)]
Error del pronóstico= [(at-1)-(ft-1)]
= [(450)-(500)]
= -50
Corrección= constante de suavización (∞) [(demanda real)-(pronostico anterior)]
Corrección= ∞ [(at-1)-(ft-1)]
=0.1 [(450)-(500)]
=-5
Pronostico nuevo= (pronóstico de último periodo)+constante de suavización [(demanda real)-(pronóstico de último periodo)]
Ft= (ft-1) +∞ [(at-1)-(ft-1)]
Ft= (500) + (0.1 [(450)-(500)]
Ft=495
Feb 8
Error del pronóstico= [(demanda real)-(pronostico anterior)]
Error del pronóstico= [(at-1)-(ft-1)]
= [(505)-(495)]
= 10
Corrección= constante de suavización (∞) [(demanda real)-(pronostico anterior)]
...