Algoritmo De Montecarlo
Enviado por lispater • 27 de Junio de 2011 • 322 Palabras (2 Páginas) • 1.306 Visitas
El método de Montecarlo1 es un método no determinístico o estadístico numérico, usado para aproximar expresiones matemáticas complejas y costosas de evaluar con exactitud. El método se llamó así en referencia al Casino de Montecarlo (Principado de Mónaco) por ser “la capital del juego de azar”, al ser la ruleta un generador simple de números aleatorios. El nombre y el desarrollo sistemático de los métodos de Montecarlo datan aproximadamente de 1944 y se mejoraron enormemente con el desarrollo de la computadora.
El uso de los métodos de Montecarlo como herramienta de investigación, proviene del trabajo realizado en el desarrollo de la bomba atómica durante la Segunda Guerra Mundial en el Laboratorio Nacional de Los Álamos en EE.UU. Este trabajo conllevaba la simulación de problemas probabilísticos de hidrodinámica concernientes a la difusión de neutrones en el material de fisión. Esta difusión posee un comportamiento eminentemente aleatorio. En la actualidad es parte fundamental de los algoritmos de Raytracing para la generación de imágenes 3D.
Montecarlo
En la primera etapa de estas investigaciones, John von Neumann y Stanislaw Ulam refinaron esta ruleta rusa y los métodos "de división" de tareas. Sin embargo, el desarrollo sistemático de estas ideas tuvo que esperar al trabajo de Harris y Herman Kahn en 1948. Aproximadamente en el mismo año, Enrico Fermi, Nicholas Metropolis y Ulam obtuvieron estimadores para los valores característicos de la ecuación de Schrödinger para la captura de neutrones a nivel nuclear usando este método.
El método de Montecarlo proporciona soluciones aproximadas a una gran variedad de problemas matemáticos posibilitando la realización de experimentos con muestreos de números pseudoaleatorios en una computadora. El método es aplicable a cualquier tipo de problema, ya sea estocástico o determinista. A diferencia de los métodos numéricos que se basan en evaluaciones en N puntos en un espacio M-dimensional para producir una solución aproximada, el método de Montecarlo tiene un error absoluto de la estimación que decrece como en virtud del teorema del límite central.
...