ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Proyecto Origami Modular


Enviado por   •  24 de Septiembre de 2020  •  Trabajo  •  298 Palabras (2 Páginas)  •  316 Visitas

Página 1 de 2

Proyecto Origami Modular

1) En los primeros pasos de la construcción del módulo Sonobe y a través de lo que observamos ¿cómo podrías demostrar que las rectas son paralelas?

- Se demuestra ya que a simple vista las rectas no se interceptan y para comprobarlo podrían medir los espacios que las separan ya que deben ser iguales o seguir dibujando las rectas.

2) ¿Cómo podemos demostrar que los dos triángulos rectángulos de la imagen (triángulo “a” y “b”) son congruentes?

- Podemos demostrarlo midiendo sus lados o ya que es un cuadrado podríamos asumir que al formar un triángulo en este ángulo y al ser todos iguales los dos triángulos son congruentes

3) En el siguiente paso de la construcción del módulo sonobe , se forman dos triángulos (“a” y “b”), responde las siguientes preguntas:

a)¿Los triángulos rectángulos formados son semejantes?

- Los triángulos rectángulos son semejantes ya que comparten los mismos ángulos.

b) ¿En qué relación están las áreas de dichos triángulos rectángulos?

- El rectángulo b es el cuádruple del a.

c) Qué pasaría si el tamaño del cuadrado inicial (con el que iniciamos la construcción del módulo sonobe) es más pequeño o más grande que el que tenemos, ¿la relación de las áreas de estos dos triángulos obtenidos variarán

-

4)En el siguiente paso vemos un paralelogramo ¿Qué tipos de triángulos reconoces?1

- Los triángulos que se pueden ver en este paso son: 2 triángulos rectángulos y 1 cuadrado

5) Al final de la construcción ¿qué relación existe entre el área de uno de los triángulos rectángulos (“b”) con respecto al área del cuadrado (“a”) formado?

-

6)Despliega el papel y teniendo en cuenta las líneas formadas por los dobleces como se ve en la imagen ¿cómo demostrarían el teorema de Pitágoras?

-

...

Descargar como (para miembros actualizados) txt (2 Kb) pdf (30 Kb) docx (8 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com