Analisis De Regresion
Enviado por huarachin • 25 de Mayo de 2015 • 490 Palabras (2 Páginas) • 275 Visitas
El análisis de la regresión es un proceso estadístico para la estimación de relaciones entre variables. Incluye muchas técnicas para el modelado y análisis de diversas variables, cuando la atención se centra en la relación entre una variable dependiente y una o más variables independientes. Más específicamente, el análisis de regresión ayuda a entender cómo el valor típico de la variable dependiente cambia cuando cualquiera de las variables independientes es variada, mientras que se mantienen las otras variables independientes fijas. Más comúnmente, el análisis de regresión estima la esperanza condicional de la variable dependiente dadas las variables independientes - es decir, el valor promedio de la variable dependiente cuando se fijan las variables independientes. Con menor frecuencia, la atención se centra en un cuantil, u otro parámetro de localización de la distribución condicional de la variable dependiente dadas las variables independientes. En todos los casos, el objetivo es la estimación de una función de las variables independientes llamada la función de regresión. En el análisis de regresión, también es de interés para caracterizar la variación de la variable dependiente en torno a la función de regresión que puede ser descrito por una distribución de probabilidad.
El análisis de regresión es ampliamente utilizado para la predicción y previsión, donde su uso tiene superposición sustancial en el campo de aprendizaje automático. El análisis de regresión se utiliza también para comprender que cuales de las variables independientes están relacionadas con la variable dependiente, y explorar las formas de estas relaciones. En circunstancias limitadas, el análisis de regresión puede utilizarse para inferir relaciones causales entre las variables independientes y dependientes. Sin embargo, esto puede llevar a ilusiones o falsas relaciones, por lo que se recomienda precaución,1 por ejemplo, la correlación no implica causalidad.
Se han desarrollado muchas técnicas para llevar a cabo análisis de regresión. Métodos familiares tales como regresión lineal y ordinaria de mínimos cuadrados de regresión son paramétrica, en que la función de regresión se define en términos de un número finito de desconocidos parámetros que se estiman a partir de los datos. regresión no paramétrica se refiere a las técnicas que permiten que la función de regresión mienta en un conjunto específico de funciones, que puede ser de dimensión infinita.
El desempeño de los métodos de análisis de regresión en la práctica depende de la forma del proceso de generación de datos, y cómo se relaciona con el método de regresión que se utiliza. Dado que la forma verdadera del proceso de generación de datos generalmente no se conoce, el análisis de regresión depende a menudo hasta cierto punto de hacer suposiciones acerca de este proceso. Estos supuestos son a veces comprobables
...