ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Cristales sintéticos de oro.


Enviado por   •  5 de Noviembre de 2014  •  Ensayo  •  1.881 Palabras (8 Páginas)  •  410 Visitas

Página 1 de 8

Características[editar]

Cristales sintéticos de oro.

El oro exhibe un color amarillo en bruto. Es considerado como el metal más maleable y dúctil que se conoce.2 Una onza (31,10 g) de oro puede moldearse en una lámina que cubra 28 m².[cita requerida] Como es un metal blando, son frecuentes las aleaciones con otros metales con el fin de proporcionarle dureza.

Además, es un buen conductor del calor y de la electricidad, y no le afecta el aire ni la mayoría de los agentes químicos. Tiene una alta resistencia a la alteración química por parte del calor, la humedad y la mayoría de los agentes corrosivos, y así está bien adaptado a su uso en la acuñación de monedas y en la joyería.

Se trata de un metal muy denso, con un alto punto de fusión y una alta afinidad electrónica. Sus estados de oxidación más importantes son 1+ y 3+. También se encuentra en el estado de oxidación 2+, así como en estados de oxidación superiores, pero es menos frecuente. La estabilidad de especies y compuestos de oro con estado de oxidación III, frente a sus homólogos de grupo, hay que razonarla considerando los efectos relativistas sobre los orbitales 5d del oro.

La química del oro es más diversa que la de la plata, su vecino inmediato de grupo: seis estados de oxidación exhibe –I a III y V. El oro –I y V no tiene contrapartida en la química de la plata. Los efectos relativistas, contracción del orbital 6s, hacen al oro diferente con relación a los elementos más ligeros de su grupo: formación de interacciones Au-Au en complejos polinucleares. Las diferencias entre Ag y Au hay que buscarlas en los efectos relativistas que se ejercen sobre los electrones 5d y 6s del oro. El radio covalente de la tríada de su grupo sigue la tendencia Cu < Ag >- Au; el oro tiene un radio covalente ligeramente menor o igual al de la plata en compuestos similares, lo que podemos asignar al fenómeno conocido como “contracción relativista + contracción lántanida”.

Electrones solvatados en amoniaco líquido reducen al oro a Au-. En la serie de compuestos MAu (M: Na, K, Rb, Cs) se debilita el carácter metálico desde Na a Cs. El CsAu es un semiconductor con estructura CsCl y se describe mejor como compuesto iónico: Cs+Au-. Hay que resaltar los compuestos iónicos del oro del tipo RbAu y CsAu con estructura tipo CsCl (8:8), ya que se alcanza la configuración tipo pseudogás noble del Hg (de 6s1 a 6s²) para el ion Au- (contracción lantánida + contracción relativista máxima en los elementos Au y Hg ). El subnivel 6s se acerca mucho más al núcleo y simultáneamente el 6p se separa por su expansión relativista. Con esto se justifica el comportamiento noble de estos metales. La afinidad electrónica del Au, -222,7 kJ mol−1, es comparable a la del yodo con –295,3 kJ mol−1. Recientemente se han caracterizado óxidos (M+)3Au-O2-(M = Rb, Cs) que también exhiben propiedades semiconductoras.

Isótopos[editar]

El oro sólo tiene un isótopo estable,197Au, el cual es también su único isótopo de origen natural. 36 radioisótopos han sido sintetizados variando en masa atómica entre 169 y 205. El más estable de éstos es 195Au con un periodo de semidesintegración de 186,1 días. 195Au es también el único isótopo que se desintegra por captura electrónica. El menos estable es 171Au, el cual se desintegra por emisión de protones con un periodo de semidesintegración de 30 µs. La mayoría de radioisótopos del oro con masas atómicas por debajo de 197 se desintegran por alguna combinación de emisión de protones, desintegración α y desintegración β+. Las excepciones son 195Au, el cual se desintegra por captura electrónica, y 196Au, el cual tiene un camino de desintegración β- menor. Todos los radioisótopos del oro con masas atómicas por encima de 197 se desintegran por desintegración β-.4

Por lo menos 32 isómeros nucleares han sido también caracterizados, variando en masa atómica entre 170 y 200. Dentro de este rango, sólo 178Au, 180Au, 181Au, 182Au y 188Au no tienen isómeros. El isómero más estable del oro es 198 m²Au con un periodo de semidesintegración de 2,27 días. El isómero menos estable del oro es 177 m²Au con un periodo de semidesintegración de sólo 7 ns. 184 m1Au tiene tres caminos de desintegración: desintegración β+, transición isomérica y desintegración alfa. Ningún otro isómero o isótopo del oro tiene tres caminos de desintegración.4

Compuestos[editar]

No existe evidencia del estado de oxidación IV, pero si para el Au(V) en el fluoruro AuF5 (rojo oscuro, d>60C, inestable, polimérico y diamagnético;su estructura consiste en octaedros AuF6 unidos por los vértices, generando un polímero monodimensional) y en el anión complejo [AuF6]- (oxidante fuerte, el más fuerte de las especies metálicas [MF6]-,donde tenemos una configuración de bajo espín d6).

El oro forma bastantes complejos pero pocos compuestos sencillos. No se ha aislado un óxido con Au(I), pero si el AuO que contiene Au+ y Au3+, pero el estado I solo es estable en estado sólido o en forma de complejos estables como el anión lineal [Au(CN)2]-, ya que en disolución se desproporciona en oro y oro(III).

El óxido Au2O3 se obtiene, como precipitado amorfo, Au2O3.nH2O, de color marrón, en medio alcalino a partir del halurocomplejo planocuadrado [AuCl4]-. El Au2O3 cristalino, polímero monodimensional, se obtiene mejor por vía hidrotermal y su estructura se genera con grupos planocuadrados [AuO4] unidos por vértices, es poco estable como es de esperar y descompone en Au y O2 a 150 °C.

La cloración de polvo de oro a 200 °C da moléculas diméricas planas de Au2Cl6, rojo (d>160 °C), que es el reactivo de partida para preparar muchos compuestos

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com