Factores Qie Inciden En La Estructura De La Poblacion
Enviado por acireeglee • 21 de Enero de 2014 • 668 Palabras (3 Páginas) • 588 Visitas
El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.
Destacamos algunas definiciones:
"Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones". Levin & Rubin (1996).
"Una población es un conjunto de elementos que presentan una característica común". Cadenas (1974).
El tamaño que tiene una población es un factor de suma importancia en el proceso de investigación estadística y en nuestro caso social, y este tamaño vienen dado por el número de elementos que constituyen la población, según el número de elementos la población puede ser finita o infinita. Cuando el número de elementos que integra la población es muy grande, se puede considerar a esta como una población infinita, por ejemplo; el conjunto de todos los números positivos.
Una población finita es aquella que está formada por un limitado número de elementos, por ejemplo; el número de habitantes de una comarca.
Cuando la población es muy grande, es obvio que la observación y/o medición de todos los elementos se multiplica la complejidad, en cuanto al trabajo, tiempo y costos necesarios para hacerlo. Para solucionar este inconveniente se utiliza una muestra estadística.
Evolución de la población española
Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo denominada muestra.
Muestra:
La muestra es una representación significativa de las características de una población, que bajo, la asunción de un error (generalmente no superior al 5%) estudiamos las características de un conjunto poblacional mucho menor que la población global.
"Se llama muestra a una parte de la población a estudiar que sirve para representarla". Murria R. Spiegel (1991).
"Una muestra es una colección de algunos elementos de la población, pero no de todos". Levin & Rubin (1996).
"Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia", Cadenas (1974).
Por ejemplo estudiamos los valores sociales de una población de 5000 habitantes aprox., entendemos que sería de gran dificultad poder analizar los valores sociales de todos ellos, por ello, la estadística nos dota de una herramienta que es la muestra para extraer un conjunto de población que represente a la globalidad
...