Relatividad especial
Enviado por panteras98 • 12 de Octubre de 2014 • 2.289 Palabras (10 Páginas) • 230 Visitas
Durante los años noventa ocurrieron una serie de cambios estructurales con efectos a escala mundial, tales como la globalización.
Relatividad general[editar]
Artículo principal: Teoría de la relatividad general
Esquema bidimensional de la curvatura del espacio-tiempo (cuatro dimensiones) generada por una masa esférica.
La relatividad general fue publicada por Einstein en 1915, y fue presentada como conferencia en la Academia de Ciencias Prusiana el 25 de noviembre. La teoría generaliza el principio de relatividad de Einstein para un observador arbitrario. Esto implica que las ecuaciones de la teoría deben tener una forma de covariancia más general que la covariancia de Lorentz usada en la teoría de la relatividad especial. Además de esto, la teoría de la relatividad general propone que la propia geometría del espacio-tiempo se ve afectada por la presencia de materia, de lo cual resulta una teoría relativista del campo gravitatorio. De hecho la teoría de la relatividad general predice que el espacio-tiempo no será plano en presencia de materia y que la curvatura del espacio-tiempo será percibida como un campo gravitatorio.
Debe notarse que el matemático alemán David Hilbert escribió e hizo públicas las ecuaciones de la covarianza antes que Einstein. Ello resultó en no pocas acusaciones de plagio contra Einstein, pero probablemente sea más, porque es una teoría (o perspectiva) geométrica. La misma postula que la presencia de masa o energía «curva» al espacio-tiempo, y esta curvatura afecta la trayectoria de los cuerpos móviles e incluso la trayectoria de la luz.
Einstein expresó el propósito de la teoría de la relatividad general para aplicar plenamente el programa de Ernst Mach de la relativización de todos los efectos de inercia, incluso añadiendo la llamada constante cosmológica a sus ecuaciones de campo4 para este propósito. Este punto de contacto real de la influencia de Ernst Mach fue claramente identificado en 1918, cuando Einstein distingue lo que él bautizó como el principio de Mach (los efectos inerciales se derivan de la interacción de los cuerpos) del principio de la relatividad general, que se interpreta ahora como el principio de covarianza general.5
Formalismo de la teoría de la relatividad[editar]
Véanse también: Espacio-tiempo, Cuadrivector y Tensor.
Representación de la línea de universo de una partícula. Como no es posible reproducir un espacio-tiempo de cuatro dimensiones, en la figura se representa sólo la proyección sobre 2 dimensiones espaciales y una temporal.
Partículas[editar]
En la teoría de la relatividad una partícula puntual queda representada por un par (\gamma(\tau), m)\;, donde \gamma(\tau)\; es una curva diferenciable, llamada línea de universo de la partícula, y m es un escalar que representa la masa en reposo. El vector tangente a esta curva es un vector temporal llamado cuadrivelocidad, el producto de este vector por la masa en reposo de la partícula es precisamente el cuadrimomento. Este cuadrimomento es un vector de cuatro componentes, tres de estas componentes se denominan espaciales y representan el análogo relativista del momento lineal de la mecánica clásica, la otra componente denominada componente temporal representa la generalización relativista de la energía cinética. Además, dada una curva arbitraria en el espacio-tiempo, puede definirse a lo largo de ella el llamado intervalo relativista, que se obtiene a partir del tensor métrico. El intervalo relativista medido a lo largo de la trayectoria de una partícula es proporcional al intervalo de tiempo propio o intervalo de tiempo percibido por dicha partícula.
Campos[editar]
Cuando se consideran campos o distribuciones continuas de masa se necesita algún tipo de generalización para la noción de partícula. Un campo físico posee momentum y energía distribuidos en el espacio-tiempo, el concepto de cuadrimomento se generaliza mediante el llamado tensor de energía-impulso que representa la distribución en el espacio-tiempo tanto de energía como de momento lineal. A su vez un campo dependiendo de su naturaleza puede representarse por un escalar, un vector o un tensor. Por ejemplo el campo electromagnético se representa por un tensor de segundo orden totalmente antisimétrico o 2-forma. Si se conoce la variación de un campo o una distribución de materia, en el espacio y en el tiempo entonces existen procedimientos para construir su tensor de energía-impulso.
Magnitudes físicas[editar]
En relatividad, estas magnitudes físicas son representadas por vectores 4-dimensionales o bien por objetos matemáticos llamados tensores, que generalizan los vectores, definidos sobre un espacio de cuatro dimensiones. Matemáticamente estos 4-vectores y 4-tensores son elementos definidos del espacio vectorial tangente al espacio-tiempo (y los tensores se definen y se construyen a partir del fibrado tangente o cotangente de la variedad que representa el espacio-tiempo).
Correspondencia entre E3nota 2 y M4nota 3
Espacio tridimensional euclídeo Espacio-tiempo de Minkowski
Punto Evento
Longitud Intervalo
Velocidad Cuadrivelocidad
Momentum Cuadriamomentum
El intervalo relativista[editar]
El intervalo relativista puede definirse en cualquier espacio-tiempo, sea éste plano como en la relatividad especial, o curvo como en relatividad general. Sin embargo, por simplicidad, discutiremos inicialmente el concepto de intervalo para el caso de un espacio-tiempo plano. El tensor métrico del espacio-tiempo plano de Minkowski se designa con la letra \scriptstyle \eta_{ij}, y en coordenadas galileanas o inerciales toma la siguiente forma:nota 4
g_{ij} = \eta_{ij} =\begin{pmatrix}
c^2 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & -1 & 0\\
0 & 0 & 0 & -1\\
\end{pmatrix}
El intervalo, la distancia tetradimensional, se representa mediante la expresión ds^2\ , que se calcula del siguiente modo:
ds^2\ = g_{ij}dx^idx^j
ds^2\ = c^2(dx^0)^2 - (dx^1)^2 - (dx^2)^2 - (dx^3)^2
ds^2\ = c^2dt^2 - dx^2 - dy^2 - dz^2 = c^2dt^2 - (dx^2 + dy^2 + dz^2)
ds^2\ = c^2dt^2 - dl^2
Reproducción de un cono de luz, en el que se representan dos dimensiones espaciales y una temporal (eje de ordenadas). El observador se sitúa en el origen, mientras que el futuro y el pasado absolutos vienen representados por las partes inferior y superior del eje temporal. El plano correspondiente a t = 0 se denomina plano de simultaneidad o hipersuperficie de presente (También
...