Analisis De Serie De Tiempo
Enviado por cerroazulito • 23 de Octubre de 2013 • 566 Palabras (3 Páginas) • 278 Visitas
Figura 1.2 Gráfica de una serie de datos con ciclicidad
Estacionalidad, las fluctuaciones estacionales se encuentran típicamente en los datos clasificados por trimestres, mes o semana. La variación estacional se refiere a un patrón de cambio, regularmente recurrente a través del tiempo. El movimiento se completa dentro de la duración de un año y se repite a sí mismo año tras año, como se presenta en la figura 1.3.
Figura 1.3 Gráfica de una serie de datos con estacionalidad.
Aleatoriedad, este comportamiento irregular está compuesto por fluctuaciones causadas por sucesos impredecibles o no periódicos, como el clima poco usual, huelgas, guerras, rumores, elecciones y cambio de leyes, como se presenta en la figura 1.4
Figura 1. 4 Gráfica de una serie de datos con aleatoriedad
Estacionaria, es aquella serie de datos cuyas propiedades estadísticas básica, como media y la varianza, permanecen constantes en el tiempo, se dice que una serie que no presenta crecimiento o declinación es estacionaria, como se presenta en la figura 1.5.
Figura 1. 5 Gráfica de una serie de datos estacionaria
3.2 Métodos de mínimos cuadrados
Mínimos cuadrados es una técnica de análisis numérico enmarcada dentro de la optimización matemática, en la que, dados un conjunto de pares ordenados: variable independiente, variable dependiente, y una familia de funciones, se intenta encontrar la función continua, dentro de dicha familia, que mejor se aproxime a los datos (un "mejor ajuste"), de acuerdo con el criterio de mínimo error cuadrático.
En su forma más simple, intenta minimizar la suma de cuadrados de las diferencias en las ordenadas (llamadas residuos) entre los puntos generados por la función elegida y los correspondientes valores en los datos. Específicamente, se llama mínimos cuadrados promedio (LMS) cuando el número de datos medidos es 1 y se usa el método de descenso por gradiente para minimizar el residuo cuadrado. Se puede demostrar que LMS minimiza el residuo cuadrado esperado, con el mínimo de operaciones (por iteración), pero requiere un gran número de iteraciones para converger.
Desde un punto de vista estadístico, un requisito implícito para que funcione el método de mínimos cuadrados es que los errores de cada medida estén distribuidos de forma aleatoria. El teorema de Gauss-Márkov prueba que los estimadores mínimos cuadráticos carecen de sesgo y que el muestreo de datos no tiene que ajustarse, por ejemplo, a una distribución normal. También es importante que los datos a procesar estén bien escogidos, para que permitan visibilidad en las variables que han de ser resueltas (para dar más peso a un dato
...