Arquímedes
Enviado por xxirwinx • 18 de Julio de 2013 • Informe • 314 Palabras (2 Páginas) • 187 Visitas
Arquímedes: Griego del siglo III aC quien dio un valor muy aproximado a Pi y creador de la espiral de Arquímedes. Sus ideas y procesos matemáticos fueron expuestos en el Palampsesto de Arquímedes.
Herón de Alejandría: Matemático del siglo I. ´Redactó 13 libros sobre temas de física, mecánica, matemática, entre otros'. Creador de un método para conseguir los resultados aproximados de las raíces cuadradas inexactas.
Diofanto: Matemático griego del siglo IV dC. También conocido como el padre del álgebra. Fue el primero en enunciar una teoría clara sobre las ecuaciones de primer grado y una forma de solucionar las ecuaciones de segundo grado.
Pitágoras: Griego del siglo VI aC. Creador de la escuela Pitagórica, comunidad que se dedicaba a estudiar los diversos ángulos de las matemáticas y a probar teorías ya formuladas. Postuló el famoso "teorema de pitágoras".
Al-Jwarizmi : Matemático árabe del siglo VIII dC. De su nombre proviene la palabra algoritmos, ya que él fue quien trabajó en ellos. Primero que utilizó la palabra "Al jbr" para denominar al álgebra.
Evariste Galois: Matemático francés del siglo XIX. Sus primeros trabajos fueron sobre las ecuaciones y las teorías de números. Como publicaciones póstumas encontramos a "los imaginarios de Galois" y "grupo de sustituciones".
Cauchy: matemático francés del siglo XVIII. Estudioso de las ecuaciones diferenciales, las determinantes, las series infinitas y las probabilidades. Publicó la "memoria de la integral definida". Gracias a él el estudio sobre el análisis infinitesimal se profundiza sobre buenas bases. "El teorema integral de Cauchy", la "teoría de las funciones complejas", "las ecuaciones de Cauchy-Riemann" y Secuencias de Cauchy son parte de sus aportes.
Gauss: también conocido como el Príncipe de las Matemáticas. De origen aleman nacido en el siglo XVIII. Probó el Binomio de Newton, autor de las Disquicisiones, obra en la cual desarrolla complicadas ecuaciones para llegar a soluciones de series infinitas, creador de la curva de probabilidad (también llamada curva de Gauss).
...