Biografias De Grandes Matematicos
Enviado por Tairissosa • 25 de Noviembre de 2013 • 20.844 Palabras (84 Páginas) • 364 Visitas
Arquímedes
Hay pocos datos fiables sobre la vida de Arquímedes. Sin embargo, todas las fuentes coinciden en que era natural de Siracusa y que murió durante el desenlace del sitio de Siracusa. Arquímedes nació c. 287 a. C. en el puerto marítimo de Siracusa (Sicilia, Italia), ciudad que en aquel tiempo era una colonia de la Magna Grecia. Conociendo la fecha de su muerte, la aproximada fecha de nacimiento está basada en una afirmación del historiador bizantino Juan Tzetzes, que afirmó7 que Arquímedes vivió hasta la edad de 75 años.8 Según una hipótesis de lectura basada en un pasaje corrupto de El contador de arena -cuyo título en griego es ψαμμίτης (Psammites)-, Arquímedes menciona el nombre de su padre, Fidias, un astrónomo.
Arquímedes murió c. 212 a. C. durante la Segunda Guerra Púnica, cuando las fuerzas romanas al mando del general Marco Claudio Marcelo capturaron la ciudad de Siracusa después de un asedio de dos años de duración. Arquímedes se distinguió especialmente durante el sitio de Siracusa, en el que desarrolló armas para la defensa de la ciudad. Polibio,13 Plutarco,14 y Tito Livio15 describen, precisamente, su labor en la defensa de la ciudad como ingeniero, desarrollando piezas de artillería y otros artefactos capaces de mantener a raya al enemigo. Plutarco, en sus relatos, llega a decir que los romanos se encontraban tan nerviosos con los inventos de Arquímedes que la aparición de cualquier viga o polea en las murallas de la ciudad era suficiente como para provocar el pánico entre los sitiadores.
Matemáticas:
Si bien la faceta de inventor de Arquímedes es quizás la más popular, también realizó importantes contribuciones al campo de las matemáticas. Sobre el particular, Plutarco dijo de él que "tenía por innoble y ministerial toda ocupación en la mecánica y todo arte aplicado a nuestros usos, y ponía únicamente su deseo de sobresalir en aquellas cosas que llevan consigo lo bello y excelente, sin mezcla de nada servil, diversas y separadas de las demás".
Arquímedes utilizó el método exhaustivo para conseguir el valor aproximado del número π.
Arquímedes fue capaz de utilizar los infinitesimales de forma similar al moderno cálculo integral. A través de la reducción al absurdo (reductio ad absurdum), era capaz de contestar problemas mediante aproximaciones con determinado grado de precisión, especificando los límites entre los cuales se encontraba la respuesta correcta. Esta técnica recibe el nombre de método exhaustivo, y fue el sistema que utilizó para aproximar el valor del número π. Para ello, dibujó un polígono regular inscrito y otro circunscrito a una misma circunferencia, de manera que la longitud de la circunferencia y el área del círculo quedan acotadas por esos mismos valores de las longitudes y las áreas de los dos polígonos. A medida que se incrementa el número de lados del polígono la diferencia se acorta, y se obtiene una aproximación más exacta.
Euclides:
Su vida es poco conocida, salvo que vivió en Alejandría (actualmente Egipto) durante el reinado de Ptolomeo I. Ciertos autores árabes afirman que Euclides era hijo de Naucrates y se barajan tres hipótesis:
Euclides fue un personaje matemático histórico que escribió Los elementos y otras obras atribuidas a él.
Euclides fue el líder de un equipo de matemáticos que trabajaba en Alejandría. Todos ellos contribuyeron a escribir las obras completas de Euclides, incluso firmando los libros con el nombre de Euclides después de su muerte.
Las obras completas de Euclides fueron escritas por un equipo de matemáticos de Alejandría quienes tomaron el nombre Euclides del personaje histórico Euclides de Megara, que había vivido unos cien años antes.
Proclo, el último de los grandes filósofos griegos, quien vivió alrededor del 450, escribió importantes comentarios sobre el libro I de los Elementos, dichos comentarios constituyen una valiosa fuente de información sobre la historia de la matemática griega. Así sabemos, por ejemplo, que Euclides reunió aportes de Eudoxo en relación a la teoría de la proporción y de Teeteto sobre los poliedros regulares.
Obra
Fragmento de los Elementos de Euclides, escrito en papiro, hallado en el yacimiento de Oxirrinco (Oxyrhynchus), Egipto.
Su obra Los elementos, es una de las obras científicas más conocidas del mundo y era una recopilación del conocimiento impartido en el centro académico. En ella se presenta de manera formal, partiendo únicamente de cinco postulados, el estudio de las propiedades de líneas y planos, círculos y esferas, triángulos y conos, etc.; es decir, de las formas regulares. Probablemente ninguno de los resultados de "Los elementos" haya sido demostrado por primera vez por Euclides pero la organización del material y su exposición, sin duda alguna se deben a él. De hecho hay mucha evidencia de que Euclides usó libros de texto anteriores cuando escribía los elementos ya que presenta un gran número de definiciones que no son usadas, tales como la de un oblongo, un rombo y un romboide. Los teoremas de Euclides son los que generalmente se aprenden en la escuela moderna. Por citar algunos de los más conocidos:
La suma de los ángulos interiores de cualquier triángulo es 180°.
En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos, que es el famoso teorema de Pitágoras.
En los libros VII, VIII y IX de los Elementos se estudia la teoría de la divisibilidad.
La geometría de Euclides, además de ser un poderoso instrumento de razonamiento deductivo, ha sido extremadamente útil en muchos campos del conocimiento; por ejemplo, en la física, la astronomía, la química y diversas ingenierías. Desde luego, es muy útil en las matemáticas. Inspirados por la armonía de la presentación de Euclides, en el siglo II se formuló la teoría ptolemaica del Universo, según la cual la Tierra es el centro del Universo, y los planetas, la Luna y el Sol dan vueltas a su alrededor en líneas perfectas, o sea circunferencias y combinaciones de circunferencias. Sin embargo, las ideas de Euclides constituyen una considerable abstracción de la realidad. Por ejemplo, supone que un punto no tiene tamaño; que una línea es un conjunto de puntos que no tienen ni ancho ni grueso, solamente longitud; que una superficie no tiene grosor, etcétera. En vista de que el punto, de acuerdo con Euclides, no tiene tamaño, se le asigna una dimensión nula o de cero. Una línea tiene solamente longitud, por lo que adquiere una dimensión igual a uno. Una superficie no tiene espesor, no tiene altura, por lo que
...