ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Características de los sistemas inerciales


Enviado por   •  30 de Junio de 2015  •  Ensayo  •  2.317 Palabras (10 Páginas)  •  2.028 Visitas

Página 1 de 10

sistemas de referencia inerciales, que sea lógicamente dependiente de las leyes de Newton. De hecho, en mecánica clásica y teoría de la relatividad especial, los sistemas inerciales pueden ser caracterizados de forma muy sencilla: un sistema inercial es aquel en el que los símbolos de Christoffel obtenidos a partir de la función lagrangiana se anulan.

En un sistema inercial no aparecen fuerzas ficticias para describir el movimiento de las partículas observadas, y toda variación de la trayectoria tiene que tener una fuerza real que la provoca.

Características de los sistemas inerciales

• El punto de referencia es arbitrario, dado un sistema de referencia inercial, cualquier otro sistema desplazado respecto al primero a una distancia fija sigue siendo inercial.

• La orientación de los ejes es arbitraria, dado un sistema de referencia inercial, cualquier otro sistema de referencia con otra orientación distinta del primero, sigue siendo inercial.

• Desplazamiento a velocidad lineal constante, dado un sistema de referencia inercial, cualquier otro que se desplace con velocidad lineal y constante, sigue siendo inercial.

Por combinación de los tres casos anteriores, tenemos que cualquier sistema de referencia desplazado respecto a uno inercial, girado y que se mueva a velocidad lineal y constante, sigue siendo inercial.

Segunda ley de newton

El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.6

Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.

En la mayoría de las ocasiones hay más de una fuerza actuando sobre un objeto, en este caso es necesario determinar una sola fuerza equivalente ya que de ésta depende la aceleración resultante. Dicha fuerza equivalente se determina al sumar todas las fuerzas que actúan sobre el objeto y se le da el nombre de fuerza neta.7

En términos matemáticos esta ley se expresa mediante la relación:

Donde:

P es el momento lineal

la fuerza total o fuerza resultante.

Suponiendo que la masa es constante y que la velocidad es muy inferior a la velocidad de la luz la ecuación anterior se puede reescribir de la siguiente manera:

Sabemos que P es el momento lineal, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.

Consideramos a la masa constante y podemos escribir aplicando estas modificaciones a la ecuación anterior:

La fuerza es el producto de la masa por la aceleración, que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre F y A. Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.

Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.

De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.

La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).

Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.

Sistema acelerado y fuerza ficticia

Una fuerza ficticia es el efecto percibido por un observador estacionario respecto a un sistema de referencia no inercial cuando analiza su sistema como si fuese unsistema de referencia inercial. La fuerza ficticia se representa matemáticaticamente como un vector fuerza calculable a partir de la masa de los cuerpos sobre la que actúa y la aceleración respecto del sistema de referencia no inercial.

Otros términos equivalentes para caracterizar la inercia en este tipo de análisis, en que el punto de vista es no-inercial (es decir, acelerado), son: pseudofuerzas ofuerzas inerciales.

La expresión fuerza ficticia no significa que dicha fuerza sea un efecto óptico, sino que asumimos que ésta actúa sobre un cuerpo cuando la realidad no es tal, ya que tan solo es una invención para explicarnos de una forma simple, y hasta cierto punto intuitiva, la aparición de efectos desacostumbrados.

Ejemplo

El pasajero de un automóvil que toma como referencia este para medir la aceleración de su propio cuerpo, cuando el vehículo frena o describe una curva, siente una «fuerza» que le empuja hacia delante o a un lateral. En realidad lo que actúa sobre su cuerpo no es una fuerza, sino la inercia (causada por la velocidad de la masa) que hace

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com