ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Cálculo de integrales


Enviado por   •  18 de Julio de 2012  •  Ensayo  •  1.443 Palabras (6 Páginas)  •  651 Visitas

Página 1 de 6

Cálculo de integrales

Artículo principal: Métodos de integración.

La técnica más básica para calcular integrales de una variable real se basa en el teorema fundamental del cálculo. Se procede de la siguiente forma:

Se escoge una función f(x) y un intervalo [a, b].

Se halla una antiderivada de f, es decir, una función F tal que F' = f.

Se emplea el teorema fundamental del cálculo, suponiendo que ni el integrando ni la integral tienen singularidades en el camino de integración,

Por tanto, el valor de la integral es F(b) − F(a).

Nótese que la integral no es realmente la antiderivada, sino que el teorema fundamental permite emplear las antiderivadas para evaluar las integrales definidas.

A menudo, el paso difícil de este proceso es el de encontrar una primitiva de f. En raras ocasiones es posible echar un vistazo a una función y escribir directamente su primitiva. Muy a menudo, es necesario emplear una de las muchas técnicas que se han desarrollado para evaluar integrales. La mayoría de ellas transforman una integral en otra que se espera que sea más manejable. Entre estas técnicas destacan:

Integración por cambio de variable

Integración por partes

Integración por sustitución trigonométrica

Integración de fracciones parciales

Incluso si estas técnicas fallan, aún puede ser posible evaluar una integral dada. La siguiente técnica más común es el cálculo del residuo, mientras que la serie de Taylor a veces se puede usar para hallar la primitiva de las integrales no elementales en lo que se conoce como el método de integración por series. También hay muchas formas menos habituales para calcular integrales definidas; por ejemplo, se puede emplear la identidad de Parseval para transformar una integral sobre una región rectangular en una suma infinita. En algunas ocasiones, se puede evaluar una integral empleando un truco; un ejemplo de este tipo se puede ver en la integral de Gauss.

Los cálculos de volúmenes de sólidos de revolución se pueden hacer normalmente con la integración por discos o la integración por capas.

Los resultados específicos que se han encontrado empleando las diferentes técnicas se recogen en la tabla de integrales.

[editar]Algoritmos simbólicos

Artículo principal: Integración simbólica.

En muchos problemas de matemáticas, física, e ingeniería en los que participa la integración es deseable tener una fórmula explícita para la integral. Con esta finalidad, a lo largo de los años se han ido publicando extensas tablas de integrales. Con el desarrollo de los ordenadores, muchos profesionales, educadores y estudiantes han recurrido a los sistemas de cálculo algebraico por ordenador, que han sido diseñados específicamente para desarrollar tareas tediosas o difíciles, entre las cuales se encuentra la integración. La integración simbólica presenta un reto especial en el desarrollo de este tipo de sistemas.

Una dificultad matemática importante de la integración simbólica es que, en muchos casos, no existe ninguna fórmula cerrada para la primitiva de una función aparentemente inocente. Por ejemplo, se sabe que las primitivas de las funciones exp (x2), xx y sen x /x no se pueden expresar con una fórmula cerrada en las que participen sólo funciones racionales, exponenciales, logarítmicas, trigonométricas, inversas de las funciones trigonométricas, y las operaciones de suma, multiplicación y composición. En otras palabras, ninguna de estas tres funciones dadas es integrable con funciones elementales. La teoría de Galois diferencial proporciona criterios generales para determinar cuándo la primitiva de una función elemental es a su vez elemental. Por desgracia, resulta que las funciones con expresiones cerradas para sus primitivas son la excepción en vez de ser la regla. En consecuencia, los sistemas de cálculo algebraico por ordenador, no pueden tener la seguridad de poder encontrar una primitiva para una función elemental cualquiera construida de forma aleatoria. En el lado positivo, si se fijan de antemano los "bloques constructivos" de las primitivas, aún es posible decidir si se puede expresar la primitiva de una función dada empleando estos bloques y las operaciones de multiplicación y composición, y hallar la respuesta simbólica en el caso de que exista. El algoritmo de Risch, implementado en Mathematica y en otros sistemas de cálculo algebraico por ordenador, hacen precisamente esto para funciones y primitivas construidas a partir de fracciones racionales, radicales, logaritmos y funciones exponenciales.

Algunos integrandos aparecen con la suficiente frecuencia como para merecer un estudio especial. En particular, puede ser útil tener, en el conjunto de las primitivas, las funciones especiales de la física (como las funciones de Legendre, la función hipergeométrica, la función gamma, etcétera). Es posible

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com