ALGEBRA LINEAL
Enviado por PASHU • 10 de Septiembre de 2013 • 1.223 Palabras (5 Páginas) • 437 Visitas
Historia del Álgebra.
La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bx = c), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas.
Esta antigua sabiduría sobre resolución de ecuaciones encontró, a su vez, acogida en el mundo islámico, en donde se la llamó “ciencia de reducción y equilibrio”. (La palabra árabe al-abr que significa `reducción', es el origen de la palabra álgebra).
En el siglo IX, el matemático egipcio Abu Kamil enunció y demostró las leyes fundamentales e identidades del álgebra, y resolvió problemas tan complicados como encontrar las x, y,z que cumplen x + y + z = 10, x2 + y2 = z2, y xz = y2.
En la edad media, los matemáticos árabes fueron capaces de describir cualquier potencia de la incógnita x, y desarrollaron el álgebra fundamental de los polinomios, aunque sin usar los símbolos modernos. Esta álgebra incluía multiplicar, dividir y extraer raíces cuadradas de polinomios, así como el conocimiento del teorema del binomio.
El matemático, poeta y astrónomo persa Omar Khayyam mostró cómo expresar las raíces de ecuaciones cúbicas utilizando los segmentos obtenidos por intersección de secciones cónicas, aunque no fue capaz de encontrar una fórmula para las raíces. A principios del siglo XIII, el matemático italiano Leonardo Fibonacci consiguió encontrar una aproximación cercana a la solución de la ecuación cúbica x3 + 2x2 + cx = d.
A principios del siglo XVI los matemáticos italianos Scipione del Ferro, Tartaglia y Gerolamo Cardano resolvieron la ecuación cúbica general en función de las constantes que aparecen en la ecuación. Ludovico Ferrari, alumno de Cardano, pronto encontró la solución exacta para la ecuación de cuarto grado y, como consecuencia, ciertos matemáticos de los siglos posteriores intentaron encontrar la fórmula de las raíces de las ecuaciones de quinto grado y superior. Sin embargo, a principios del siglo XIX el matemático noruego Niels Abel y el francés Évariste Galois demostraron la inexistencia de dicha fórmula.
Un avance importante en el álgebra fue la introducción, en el siglo XVI, de símbolos para las incógnitas y para las operaciones y potencias algebraicas. Debido a este avance, el Libro III de la Geometría (1637), escrito por el matemático y filósofo francés René Descartes se parece bastante a un texto moderno de álgebra. Sin embargo, la contribución más importante de Descartes a las matemáticas fue el descubrimiento de la geometría analítica, que reduce la resolución de problemas geométricos a la resolución de problemas algebraicos. Su libro de geometría contiene también los fundamentos de un curso de teoría de ecuaciones, incluyendo lo que el propio Descartes llamó la regla de los signos para contar el número de raíces verdaderas (positivas) y falsas (negativas) de una ecuación. Durante el siglo XVIII se continuó trabajando en la teoría de ecuaciones y en 1799 el matemático alemán Carl Friedrich Gauss publicó la demostración de que toda ecuación polinómica tiene al menos una raíz en el plano complejo.
En los tiempos de Gauss, el álgebra había entrado en su etapa moderna. El foco de atención se trasladó de las ecuaciones polinómicas al estudio de la estructura de sistemas matemáticos abstractos, cuyos axiomas estaban basados en el comportamiento de objetos matemáticos, como los números complejos, que los matemáticos habían encontrado al estudiar las ecuaciones polinómicas. Dos ejemplos de dichos sistemas son los grupos y las cuaternas, que comparten algunas de las propiedades de los sistemas numéricos, aunque también difieren de ellos de manera sustancial. Los grupos comenzaron como sistemas de permutaciones y combinaciones (véase Combinatoria) de las raíces de polinomios, pero evolucionaron para llegar a ser uno de los más importantes conceptos unificadores de las matemáticas en el siglo XIX. Los matemáticos franceses Galois
...