ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

CODENADAS POLARES ENSAYO


Enviado por   •  28 de Octubre de 2014  •  382 Palabras (2 Páginas)  •  418 Visitas

Página 1 de 2

El sistema de coordenadas polares es un sistema de coordenadas bidimensional en el cual cada punto o posición del plano se determina por un ángulo y una distancia.

De manera más precisa, todo punto del plano corresponde a un par de coordenadas (r, θ) donde r es la distancia del punto al origen o polo y θ es el ángulo positivo en sentido anti-horario medido desde el eje polar (equivalente al eje x del sistema cartesiano). La distancia se conoce como la «coordenada radial» o «radio vector» mientras que el ángulo es la «coordenada angular» o «ángulo polar».

En el caso del origen de coordenadas, el valor de r es cero, pero el valor de θ es indefinido. En ocasiones se adopta la convención de representar el origen por (0,0º).

Se le llama ecuación polar a la ecuación que define una curva algebraica expresada en coordenadas polares. En muchos casos se puede especificar tal ecuación definiendo r como una función de θ. La curva resultante consiste en una serie de puntos en la forma (r(θ), θ) y se puede representar como la gráfica de una función r.

Se pueden deducir diferentes formas de simetría de la ecuación de una función polar r. Si r(−θ) = r(θ) la curva será simétrica respecto al eje horizontal (0°/180°), si r(180°−θ) = r(θ) será simétrica respecto al eje vertical (90°/ 270°), y si r(θ−α°) = r(θ) será simétrico rotacionalmente α° en sentido horario respecto al polo.

Debido a la naturaleza circular del sistema de coordenadas polar, muchas curvas se pueden describir con una simple ecuación polar, mientras que en su forma cartesiana sería mucho más intrincado. Algunas de las curvas más conocidas son la rosa polar, la espiral de Arquímedes, la lemniscata, el caracol de Pascal y la cardioide.

Para los apartados siguientes se entiende que el círculo, la línea y la rosa polar no tienen restricciones en el dominio y rango de la curva.

Conclusión

Luego de haber visto todas las curvas polares presentadas a lo largo de esta investigación, podemos darnos cuenta que hay muchas figuras que se forman en las coordenadas polares que pueden ser identificadas y reconocidas por un nombre propio que las hace particulares.

El conocer las tendencias que una función determinada tiene en las coordenadas polares es una gran ayuda previa que nos facilitará la graficación de las mismas.

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com