CURVAS POLARES.
Enviado por RegiLanderoG • 17 de Agosto de 2014 • 582 Palabras (3 Páginas) • 254 Visitas
MONTAÑO SALAZAR JANETT
“COORDENADAS POLARES”
Las coordenadas polares o sistemas polares son un sistema de coordenadas bidimensional en el cual cada punto del plano se determina por un ángulo y una distancia, ampliamente utilizados en física y trigonometría.
De manera más precisa, se toman: un punto O del plano, al que se le llama origen o polo, y una recta dirigida (o rayo, o segmento OL) que pasa por O, llamada eje polar (equivalente al eje x del sistema cartesiano), como sistema de referencia. Con este sistema de referencia y una unidad de medida métrica (para poder asignar distancias entre cada par de puntos del plano), todo punto P del plano corresponde a un par ordenado (r, θ) donde r es la distancia de P al origen y θ es el ángulo formado entre el eje polar y la recta dirigidaOP que va de O a P. El valor θ crece en sentido antihorario y decrece en sentido horario. La distancia r (r ≥ 0) se conoce como la «coordenada radial» o «radio vector», mientras que el ángulo es la «coordenada angular» o «ángulo polar».
En el caso del origen, O, el valor de r es cero, pero el valor de θ es indefinido. En ocasiones se adopta la convención de representar el origen por (0,0º).
En la figura se representa un sistema de coordenadas polares en el plano, el centro de referencia (punto O) y la línea OL sobre la que se miden los ángulos. Para referenciar un punto se indica la distancia al centro de coordenadas y el ángulo sobre el eje OL.
• El punto (3, 60º) indica que está a una distancia de 3 unidades desde O, medidas con un ángulo de 60º sobre OL.
• El punto (4, 210º) indica que está a una distancia de 4 unidades desde O y un ángulo de 210º sobre OL.
Un aspecto a considerar en los sistemas de coordenadas polares es que un único punto del plano puede representarse con un número infinito de coordenadas diferentes, lo cual no sucede en el sistema de coordenadas cartesianas. O sea que en el sistema de coordenadas polares no hay una correspondencia biunívoca entre los puntos del plano y el conjunto de las coordenadas polares. Esto ocurre por dos motivos:
• Un punto, definido por un ángulo y una distancia, es el mismo punto que el indicado por ese mismo ángulo más un número de revoluciones completas y la misma distancia. En general, el punto ( , θ) se puede representar como ( , θ ± ×360°) o (− , θ ± (2 + 1)180°), donde es un número entero cualquiera.4
• El centro de coordenadas está definido por una distancia nula, independientemente de los ángulos que se especifiquen. Normalmente se utilizan las coordenadas arbitrarias (0, θ) para representar el polo, ya que independientemente del valor que tome el ángulo θ, un punto con radio 0 se encuentra siempre en el polo. Estas circunstancias deben tenerse en cuenta para evitar confusiones en este sistema de coordenadas. Para obtener una única representación
...