Calculo Vectorial
Enviado por xickoKDC • 21 de Noviembre de 2012 • 351 Palabras (2 Páginas) • 584 Visitas
5.1 Introducción
La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral es una suma de infinitos sumandos, infinitamente pequeños.
El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería y en la matemática en general y se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.
Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos.
Dada una función f(x) de una variable real x y un intervalo [a,b] de la recta real, la integral es igual al área de la región del plano xy limitada entre la gráfica de f, el eje x, y las líneas verticales x = a y x = b, donde son negativas las áreas por debajo del eje x.
La palabra "integral" también puede hacer referencia a la noción de primitiva: una función F, cuya derivada es la función dada f. En este caso se denomina integral indefinida, mientras que las integrales tratadas en este artículo son las integrales definidas. Algunos autores mantienen una distinción entre integrales primitivas e indefinidas.
En matemática, una integral de línea o curvilínea es aquella integral cuya función es evaluada sobre una curva. En el caso de una curva es cerrada en dos dimensiones o del plano complejo, se llama también integral de contorno.
Ejemplos prácticos de su utilización pueden ser:
• el cálculo de la longitud de una curva en el espacio,
• el cálculo del volumen de un objeto descrito por una curva, objeto del que se posee una función (campo escalar) que describe su volumen a lo largo de la curva,
• o también para el cálculo del trabajo que se realiza para mover algún objeto a lo largo de una trayectoria teniendo en cuenta campos de fuerzas (descritos por campos vectoriales) que actúen sobre el mismo.
...