ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Campo Magnetico


Enviado por   •  27 de Marzo de 2014  •  1.662 Palabras (7 Páginas)  •  249 Visitas

Página 1 de 7

Flujo del campo eléctrico

Flujo eléctrico a través de una superficie elipsoidal.

El flujo (denotado como ) es una propiedad de cualquier campo vectorial referida a una superficie hipotética que puede ser cerrada o abierta. Para un campo eléctrico, el flujo ( ) se mide por el número de líneas de fuerza que atraviesan la superficie.

Para definir al flujo eléctrico con precisión considérese la figura, que muestra una superficie cerrada arbitraria ubicada dentro de un campo eléctrico.

La superficie se encuentra dividida en cuadrados elementales , cada uno de los cuales es lo suficientemente pequeño como para que pueda ser considerado como un plano. Estos elementos de área pueden ser representados como vectores , cuya magnitud es la propia área, la dirección es perpendicular a la superficie y hacia afuera.

En cada cuadrado elemental también es posible trazar un vector de campo eléctrico . Ya que los cuadrados son tan pequeños como se quiera, puede considerarse constante en todos los puntos de un cuadrado dado.

y caracterizan a cada cuadrado y forman un ángulo entre sí y la figura muestra una vista amplificada de dos cuadrados.

El flujo, entonces, se define como sigue:

(1)

O sea:

(2)

Flujo para una superficie cilíndrica en presencia de un campo uniforme

Flujo eléctrico a través de una superficie cilíndrica.

Supóngase una superficie cilíndrica colocada dentro de un campo uniforme tal como muestra la figura:

El flujo puede escribirse como la suma de tres términos, (a) una integral en la tapa izquierda del cilindro, (b) una integral en la superficie cilíndrica y (c) una integral en la tapa derecha:

(3)

Para la tapa izquierda, el ángulo , para todos los puntos, es de , tiene un valor constante y los vectores son todos paralelos.

Entonces:

(4)

siendo el área de la tapa. Análogamente, para la tapa derecha:

(5)

Finalmente, para la superficie cilíndrica:

(6)

Por consiguiente: da cero ya que las mismas líneas de fuerza que entran, después salen del cilindro.

(7)

Flujo para una superficie esférica con una carga puntual en su interior

Flujo eléctrico de una carga puntual en el interior de una esfera.

Considérese una superficie esférica de radio r con una carga puntual q en su centro tal como muestra la figura. El campo eléctrico es paralelo al vector superficie , y el campo es constante en todos los puntos de la superficie esférica.

En consecuencia:

(8)

Deducciones

Deducción de la ley de Gauss a partir de la ley de Coulomb

Este teorema aplicado al campo eléctrico creado por una carga puntual es equivalente a la ley de Coulomb de la interacción electrostática.

La ley de Gauss puede deducirse matemáticamente a través del uso del concepto de ángulo sólido, que es un concepto muy similar a los factores de vista conocidos en la transferencia de calor por radiación.

El ángulo sólido que es subtendido por sobre una superficie esférica, se define como:

siendo el radio de la esfera.

como el área total de la esfera es el ángulo sólido para ‘’toda la esfera’’ es:

la unidad de este ángulo es el estereorradián (sr)

Si el área no es perpendicular a las líneas que salen del origen que subtiende a , se busca la proyección normal, que es:

Si se tiene una carga "q" rodeada por una superficie cualquiera, para calcular el flujo que atraviesa esta superficie es necesario encontrar para cada elemento de área de la superficie, para luego sumarlos. Como la superficie que puede estar rodeando a la carga puede ser tan compleja como quiera, es mejor encontrar una relación sencilla para esta operación:

De esta manera es el mismo ángulo sólido subentendido por una superficie esférica. como se mostró un poco más arriba para cualquier esfera, de cualquier radio. de esta forma al sumar todos los flujos que atraviesan a la superficie queda:

que es la forma integral de la ley de Gauss. La ley de Coulomb también puede deducirse a través de Ley de Gauss.

Forma diferencial e integral de la Ley de Gauss

Forma diferencial de la ley de Gauss

Tomando la ley de Gauss en forma integral.

Aplicando al primer termino el teorema de Gauss de la divergencia queda

Como ambos lados de la igualdad poseen diferenciales volumétricas, y esta expresión debe ser cierta para cualquier volumen, solo puede ser que:

Que es la forma diferencial de la Ley de Gauss (en el vacío).

Esta ley se puede generalizar cuando hay un dieléctrico presente, introduciendo el campo de desplazamiento eléctrico . de esta manera la Ley de Gauss se puede escribir en su forma más general como

Finalmente es de esta forma en que la ley de gauss es realmente útil para resolver problemas complejos de maneras relativamente sencillas.

Forma integral de la ley de Gauss

Su forma integral utilizada en el caso de una distribución extensa de carga puede

...

Descargar como (para miembros actualizados) txt (10 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com