ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Capítulo 1 | Funciones y Secuencias


Enviado por   •  7 de Mayo de 2017  •  Tarea  •  973 Palabras (4 Páginas)  •  232 Visitas

Página 1 de 4

78                  Capítulo 1 | Funciones y Secuencias

(b) En su lugar, supongamos que sólo se atrapan peces mientras nadan río abajo. ¿Cuál es la recursión temporal discreta para la dinámica de la población? (Asuma nuevamente que no hay mortalidad en el mar.)

(C) ¿Cuál de las recursiones obtenidas en las partes (a) y predice el mayor aumento del tamaño de la población de un año para el siguiente? Justifique su respuesta matemáticamente y en términos de la biología subyacente.

Tú puedes suponer que 0 < d < 1 and b > 0.

38. Grupos metilo en el ADN. El ADN a veces tiene propiedades químicas, llamados grupos metilo, que afectan al gen. Supongamos que, durante cada hora, primero una fracción m de locaciones no metilados en el ADN se metilan, y entonces una fracción u de locaciones metilados se convierten en no metilado

Encuentre una recursión para la fracción f de la molécula de ADN que está metilada.

39. Dos cepas de bacterias. Supongamos que el tamaño de la población de dos cepas de bacterias crece según lo descrito por las recurrencias  [pic 1],  respectivamente.

La frecuencia de la primera cepa en el tiempo t se define como[pic 2] Derivar una recurrencia para pt  y demuestra que puede escribirse en términos de una sola constante  =Ra/Rb.[pic 3]

40. Encuentra los 40 primeros términos de la secuencia definida por:

an11 [pic 4]

=11, haga lo mismo si, =25. Haga una conjetura sobre este tipo de secuencia.[pic 5][pic 6]

[pic 7][pic 8]


[pic 9]

[pic 10]


[pic 11][pic 12][pic 13][pic 14][pic 15][pic 16][pic 17][pic 18][pic 19][pic 20][pic 21][pic 22][pic 23][pic 24][pic 25][pic 26][pic 27][pic 28]

78                  Capítulo 1 | Funciones y Secuencias [pic 29][pic 30][pic 31]

[pic 32][pic 33][pic 34]

Capítulo  1 - Revisión

CHEQUEO DE CONCEPTOS

[pic 35]

1.  (a) ¿Qué es una función? ¿Cuáles son su dominio y alcance?

      (b) ¿Cuál es la gráfica de una función?

      (c) ¿Cómo se puede saber si una curva dada es la gráfica de una                

              función?

2. Discuta cuatro maneras de representar una función. Ilustrar tu discusión con ejemplos.

3. (a) ¿Qué es una función par? ¿Se puede saber si una función es  

...

Descargar como (para miembros actualizados) txt (4 Kb) pdf (438 Kb) docx (354 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com