Circulo De Morh
Enviado por exodus • 17 de Agosto de 2011 • 1.031 Palabras (5 Páginas) • 1.474 Visitas
Círculo de Mohr
El círculo de Mohr permite el cálculo rápido y exacto de:
(1) Los esfuerzos principales máximo y mínimo.
(2) El esfuerzo cortante máximo.
(3) Los ángulos de orientación del elemento sometido al esfuerzo principal y del elemento sometido al esfuerzo cortante máximo.
(4) El esfuerzo normal que existe junto con el esfuerzo cortante máximo sobre el elemento sometido al esfuerzo cortante máximo.
ESFUERZOS PRINCIPALES
Siempre es importante obtener los valores máximos de los esfuerzos tanto los normales como los de corte para compararlos con los valores admisibles del material que se está evaluando.
El esfuerzo normal máximo se deduce derivando σx' con respecto al ángulo ð :
dσx' /dð = 0 = - ( σx - σy ) (sen 2ð) + 2 ðxy (cos 2ð)
tan 2ð = 2 ðxy / ( σx - σy )
La solución de esta ecuación son dos ángulos que valen : ð y ð + 90
Al evaluar usando estos valores para el ángulo ð se obtienen los esfuerzos normales máximo ( σ1) y mínimo (σ2). Es importante destacar que si se iguala ðx'y' = 0 se obtiene la misma expresión que la derivada, esto implica que cuando el elemento se rota para encontrar los esfuerzos principales (σ1 y σ2) se produce que el esfuerzo cortante vale cero.
En definitiva :
σ1 , σ2 = ( σx + σy ) / 2 + / -
El esfuerzo cortante máximo se obtiene de forma similar, derivando la expresión correspondiente con respecto al ángulo ð.
dtx'y' / dð = 0 = -2 ðxy (sen 2ð) - ( σx - σy ) (cos 2ð)
tan 2ð = - ( σx - σy ) / 2 ðxy
Esta expresión nos entrega el ángulo para el cual se producen los esfuerzos cortantes máximos, queda en definitiva :
ð1 y ð2 = + / -
ESFUERZOS CORTANTES MÁXIMOS
El esfuerzo cortante máximo difiere del esfuerzo cortante mínimo solo en signo, como muestran las formulas explicadas el tema Esfuerzo s Principales. Además, puesto que las dos raíces de la ecuación tan 2ð = - ( σx - σy ) / 2 ðxy
sitúan el plano a 90°, este resultado significa también que son iguales los valores numéricos de los esfuerzos cortantes en planos mutuamente perpendiculares.
En esta deducción, la diferencia de signo de los dos esfuerzos cortantes surgen de la convención para localizar los planos en que actúan estos esfuerzos. Desde el punto de vista físico dichos signos carecen de significado, por esta razón al mayor esfuerzo cortante, independientemente de su signo, se llama esfuerzo cortante máximo.
El sentido definido del esfuerzo cortante siempre se puede determinar por la sustitución directa de la raíz particular de ð en la ecuación
ðx'y' = ðxy (cos 2ð) - ( σx - σy )/2 (sen 2ð)
un esfuerzo cortante
...