Coeficiente De Correlación De Spearman Y De Pearson
Enviado por AntonioAvalos • 5 de Octubre de 2014 • 1.111 Palabras (5 Páginas) • 526 Visitas
Coeficiente de correlación de Spearman
El coeficiente de correlación de Spearman es menos sensible que el de Pearson para los valores muy lejos de lo esperado. En este ejemplo: Pearson = 0.30706 Spearman = 0.76270
En estadística, el coeficiente de correlación de Spearman, ρ (ro) es una medida de la correlación (la asociación o interdependencia) entre dos variables aleatorias continuas. Para calcular ρ, los datos son ordenados y reemplazados por su respectivo orden.
El estadístico ρ viene dado por la expresión:
Donde D es la diferencia entre los correspondientes estadísticos de orden de x - y. N es el número de parejas.
Se tiene que considerar la existencia de datos idénticos a la hora de ordenarlos, aunque si éstos son pocos, se puede ignorar tal circunstancia
Para muestras mayores de 20 observaciones, podemos utilizar la siguiente aproximación a la distribución t de Student
La interpretación de coeficiente de Spearman es igual que la del coeficiente de correlación de Pearson. Oscila entre -1 y +1, indicándonos asociaciones negativas o positivas respectivamente, 0 cero, significa no correlación pero no independencia. La tau de Kendall es un coeficiente de correlación por rangos, inversiones entre dos ordenaciones de una distribución normal bivariante.
Ejemplo
Los datos brutos usados en este ejemplo se ven debajo.
CI Horas de TV a la semana
106 7
86 0
100 28
100 50
99 28
103 28
97 20
113 12
113 7
110 17
El primer paso es ordenar los datos de la primera columna. Después, se crean dos columnas más. Ambas son para ordenar (establecer un lugar en la lista) de las dos primeras columnas. Después se crea una columna "d" que muestra las diferencias entre las dos columnas de orden. Finalmente, se crea otra columna "d2". Esta última es sólo la columna "d" al cuadrado.
Después de realizar todo esto con los datos del ejemplo, se debería acabar con algo como lo siguiente:
CI (i) Horas de TV a la semana (t) orden(i) orden(t) d d2
86 0 1 1 0 0
97 20 2 6 4 16
99 28 3 8 5 25
100 50 4.5 10 5.5 30.25
100 28 4.5 8 3.5 12.25
103 28 6 8 2 4
106 7 7 2.5 4.5 20.25
110 17 8 5 3 9
113 7 9.5 2.5 7 49
113 12 9.5 4 5.5 30.25
Nótese como el número de orden de los valores que son idénticos es la media de los números de orden que les corresponderían si no lo fueran.
Los valores de la columna d2 pueden ser sumados para averiguar . El valor de n es 10. Así que esos valores pueden ser sustituidos en la fórmula.
De lo que resulta .
Determinando la significación estadística
La aproximación moderna al problema de averiguar si un valor observado de ρ es significativamente diferente de cero (siempre tendremos -1 ≤ ρ ≤ 1) es calcular la probabilidad de que sea mayor o igual que el ρ esperado, dada la hipótesis nula, utilizando un test de permutación. Esta aproximación es casi siempre superior a los métodos tradicionales, a no ser que el conjunto de datossea tan grande que la potencia informática no sea suficiente para generar permutaciones (poco probable con la informática moderna), o a no ser que sea difícil crear un algoritmo para crear permutaciones que sean lógicas bajo la hipótesis nula en el caso particular de que se trate (aunque normalmente estos algoritmos no ofrecen dificultad).
Aunque el test de permutación es a menudo trivial para cualquiera con recursos informáticos y experiencia en programación, todavía se usan ampliamente los métodos tradicionales para obtener significación. La aproximación más básica es comparar el ρ observado con tablas publicadas para varios niveles de significación. Es una
...