ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El concepto de la superficie esférica


Enviado por   •  9 de Noviembre de 2014  •  Informe  •  309 Palabras (2 Páginas)  •  181 Visitas

Página 1 de 2

En geometría, una superficie esférica es una superficie de revolución formada por el conjunto de los puntos del espacio cuyos puntos equidistan de otro interior llamado centro. Los puntos cuya distancia es menor que la longitud del radio forman el interior de la superficie esférica. La unión del interior y la superficie esférica se llama bola cerrada.

La esfera, como superficie de revolución, se genera haciendo girar una superficie semicircular alrededor de su diámetro (Euclides, L. XI, def. 14).

Esfera proviene del término griego σφαῖρα, sphaîra, que significa pelota (para jugar). Coloquialmente hablando, se emplea la palabra bola, para describir al cuerpo delimitado por una esfera. La intersección de un plano y una esfera siempre es una circunferencia. La esfera es el único cuerpo que tiene esta propiedad. Lógicamente, si el plano es tangente, el área de contacto queda reducido a un punto (puede considerarse el caso límite de la intersección).

Si el plano pasa por el centro de la esfera, el radio del círculo es el mismo que el de la esfera, r. En este caso, la circunferencia puede llamarse ecuador o círculo máximo.

Si la distancia d, entre el plano y el centro, es inferior al radio r de la esfera, aplicando el teorema de Pitágoras, el radio de la sección es:

r' = \sqrt{r^2 - d^2}

Intersección de esferas.

Por otra parte, dos esferas se intersecan si:

d \le r + r'

y

r - r' \le d

(son las desigualdades triangulares, y equivalen a que ningún lado es superior a la suma de los otros dos), es decir, si existe un triángulo con lados que midan r, r' y d, donde d es la distancia entre los centros de las esferas, r y r' sus radios.

En tal caso, la intersección es también una circunferencia. Cuando una de las desigualdades anteriores es una igualdad, la intersección será un punto, que equivale a una circunferencia de radio cero.

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com