ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El concepto de polinomio en matemáticas


Enviado por   •  18 de Enero de 2014  •  Trabajo  •  739 Palabras (3 Páginas)  •  277 Visitas

Página 1 de 3

En matemáticas, un polinomio (del griego, πολυς polys 'muchos' y νόμος nómos'regla, prescripción, distribución', a través del latín polynomius)1 2 3 es una expresión matemática constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variables indeterminadas.

Suma de polinomios

Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.

P(x) = 2x3 + 5x − 3 Q(x) = 4x − 3x2 + 2x3

1Ordenamos los polinomios, si no lo están.

Q(x) = 2x3 − 3x2 + 4x

P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)

2Agrupamos los monomios del mismo grado.

P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3

3Sumamos los monomios semejantes.

P(x) + Q(x) = 4x3− 3x2 + 9x − 3

Resta de polinomios

La resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.

P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)

P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x

P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3

P(x) − Q(x) = 3x2 + x − 3

Multiplicación de polinomios

Multiplicación de un número por un polinomio

Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.

3 • ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6

Multiplicación de un monomio por un polinomio

Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.

3 x2 • (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2

Multiplicación de polinomios

P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x

Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.

P(x) • Q(x) = (2x2 − 3) • (2x3 − 3x2 + 4x) =

= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =

Se suman los monomios del mismo grado.

= 4x5 − 6x4 + 2x3 + 9x2 − 12x

Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.

También podemos multiplicar polinomios de siguiente modo:

División de polinomios

Resolver la división de polinomios:

P(x) = x5 + 2x3 − x − 8 Q(x) = x2 − 2x + 1

P(x) : Q(x)

A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.

A la derecha

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com