ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

El uso de la integral cálculo


Enviado por   •  22 de Mayo de 2013  •  Tutorial  •  547 Palabras (3 Páginas)  •  369 Visitas

Página 1 de 3

CALCULO INTEGRAL

Cálculo, rama de las matemáticas que se ocupa del estudio de los incrementos en las variables, pendientes de curvas, valores máximo y mínimo de funciones y de la determinación de longitudes, áreas y volúmenes. Su uso es muy extenso, sobre todo en ciencias e ingeniería, siempre que haya cantidades que varíen de forma continua.

II. Evolución histórica

El cálculo se deriva de la antigua geometria griega. Democrito calculó el volumen de piramides y conos, se cree que considerándolos formados por un número infinito de secciones de grosor infinitesimal (infinitamente pequeño), y Eudoxo y Arquímides utilizaron el "método de agotamiento" para encontrar el área de un círculo con la exactitud requerida mediante el uso de polígonos inscritos. Sin embargo, las dificultades para trabajar con números irracionales y las paradojas de Zenon de Eleaimpidieron formular una teoría sistemática del cálculo. En el siglo XVII, Francesco B. Cavalieri yEvangelista Torricelli ampliaron el uso de los infinitesimales, y Descartes y Pierre de Fermat utilizaron el algebra para encontrar el área y las tangentes (integración y diferenciación en términos modernos). Fermat e Isaac Barrow tenían la certeza de que ambos cálculos estaban relacionados, aunque fueron Isaac Newton (hacia 1660) y Gottfried W. Leibniz (hacia 1670) quienes demostraron que son inversos, lo que se conoce como teorema fundamental del cálculo. El descubrimiento de Newton, a partir de su teoría de la gravedad, fue anterior al de Leibniz, pero el retraso en su publicación aún provoca disputas sobre quién fue el primero. Sin embargo, terminó por adoptarse la notación de Leibniz.

En el siglo XVIII aumentó considerablemente el número de aplicaciones del cálculo, pero el uso impreciso de las cantidades infinitas e infinitesimales, así como la intuición geométrica, causaban todavía confusión y controversia sobre sus fundamentos. Uno de sus críticos más notables fue el filósofo irlandés George Berkeley. En el siglo XIX los analistas matemáticos sustituyeron esas vaguedades por fundamentos sólidos basados en cantidades finitas: Bernhard Bolzano y Augustin Louis Cauchy definieron con precisión los límites y las derivadas; Cauchy y Bernhard Riemann hicieron lo propio con las integrales, y Julius Dedekind y Karl Weierstrass con los números reales. Por ejemplo, se supo que las funciones diferenciables son continuas y que las funciones continuas son integrables, aunque los recíprocos son falsos. En el siglo XX, el análisis no convencional, legitimó el uso de los infinitesimales. Al mismo tiempo, la aparición de los ordenadores o computadoras ha incrementado las aplicaciones del cálculo.

El cálculo Integral se puede aplicar o mejor se puede usar para calcular áreas entre curvas, volúmenes de sólidos, y el trabajo realizado por una fuerza variable. En este caso vamos a ser énfasis en el cálculo

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com