Energia Cinetica
Enviado por 8186858516 • 5 de Diciembre de 2013 • 2.668 Palabras (11 Páginas) • 314 Visitas
ENERGIA CINETICA
El principio de la mecánica clásica que E α mv ² fue desarrollado por primera vez por Gottfried Leibniz y Daniel Bernoulli , que describe la energía cinética como la fuerza viva o vis viva . Willem 's Gravesande de los Países Bajos proporcionó evidencia experimental de esta relación. Al caer los pesos de diferentes alturas en un bloque de arcilla, Gravesande determinó que la profundidad de penetración es proporcional al cuadrado de la velocidad de impacto. Émilie du Châtelet reconoció las implicaciones del experimento y publicó una explicación.
Los primeros conocimientos de esas ideas pueden ser atribuidos a Gaspard Gustave Coriolis quien en 1829 publicó un artículo titulado Du Calcul de l'Effet des Machines esbozando las matemáticas de la energía cinética. El término energía cinética se debe a William Thomson más conocido como Lord Kelvin en 1849.
Existen varias formas de energía como la energía química, el calor, la radiación electromagnética, la energía nuclear, las energías gravitacional, eléctrica, elástica, etc, todas ellas pueden ser agrupadas en dos tipos: la energía potencial y la energía cinética.
La energía cinética puede ser entendida mejor con ejemplos que demuestren cómo ésta se transforma de otros tipos de energía y a otros tipos de energía. Por ejemplo un ciclista quiere usar la energía química que le proporcionó su comida para acelerar su bicicleta a una velocidad elegida. Su velocidad puede mantenerse sin mucho trabajo, excepto por la resistencia del aire y la fricción. La energía química es convertida en una energía de movimiento, conocida como energía cinética, pero el proceso no es completamente eficiente y el ciclista también produce calor.
La energía cinética en movimiento de la bicicleta y el ciclista pueden convertirse en otras formas. Por ejemplo, el ciclista puede encontrar una cuesta lo suficientemente alta para subir, así que debe cargar la bicicleta hasta la cima. La energía cinética hasta ahora usada se habrá convertido en energía potencial gravitatoria que puede liberarse lanzándose cuesta abajo por el otro lado de la colina. Alternativamente el ciclista puede conectar una dínamo a una de sus ruedas y así generar energía eléctrica en el descenso. La bicicleta podría estar viajando más despacio en el final de la colina porque mucha de esa energía ha sido desviada en hacer energía eléctrica. Otra posibilidad podría ser que el ciclista aplique sus frenos y en ese caso la energía cinética se estaría disipando a través de la fricción en energía calórica.
Como cualquier magnitud física que sea función de la velocidad, la energía cinética de un objeto no solo depende de la naturaleza interna de ese objeto, también depende de la relación entre el objeto y el observador (en física un observador es formalmente definido por una clase particular de sistema de coordenadas llamado sistema inercial de referencia). Magnitudes físicas como ésta son llamadas invariantes. La energía cinética esta co-localizada con el objeto y atribuido a ese campo gravitacional.
El cálculo de la energía cinética se realiza de diferentes formas según se use la mecánica clásica, la mecánica relativista o la mecánica cuántica. El modo correcto de calcular la energía cinética de un sistema depende de su tamaño, y la velocidad de las partículas que lo forman. Así, si el objeto se mueve a una velocidad mucho más baja que la velocidad de la luz, la mecánica clásica de Newton será suficiente para los cálculos; pero si la velocidad es cercana a la velocidad de la luz, la teoría de la relatividad empieza a mostrar diferencias significativas en el resultado y debería ser usada. Si el tamaño del objeto es más pequeño, es decir, de nivel subatómico, la mecánica cuántica es más apropiada.
Energía cinética en mecánica clásica
Energía cinética en diferentes sistemas de referencia
Como hemos dicho, en la mecánica clásica, la energía cinética de una masa puntual depende de su masa m y sus componentes del movimiento. Se expresa en julios (J). 1 J = 1 kg·m2/s2. Estos son descritos por la velocidad v de la masa puntual, así: E_c = \frac{1}{2} m v^2.
En un sistema de coordenadas especial, esta expresión tiene las siguientes formas:
Coordenadas cartesianas (x, y, z):
E_c={1 \over 2} m (\dot x^2+\dot y^2+\dot z^2)
Coordenadas polares ( r, \phi ):
E_c=\frac{1}{2}m \left(\dot r^2 + r^2 \dot \varphi^2 \right)
Coordenadas cilíndricas ( r, \phi, z ):
E_c=\frac{1}{2}m \left(\dot r^2 + r^2 \dot \varphi^2 + \dot z^2 \right)
Coordenadas esféricas ( r, \phi, \theta ):
E_c=\frac{1}{2}m \left(r^2 \left[\dot \theta^2 + \dot \varphi^2 \sin^2\theta \right] + \dot r^2 \right)
Con eso el significado de un punto en una coordenada y su cambio temporal se describe como la derivada temporal de su desplazamiento:
\dot x = \frac{\mathrm{d}x}{\mathrm{d}t}= \frac{\mathrm{d}}{\mathrm{d}t} x(t)
En un formalismo hamiltoniano no se trabaja con esas componentes del movimiento, o sea con su velocidad, sino con su impulso p (cambio en la cantidad de movimiento). En caso de usar componentes cartesianas obtenemos:
E_c = \frac{p_x^2+p_y^2+p_z^2}{2m}
Energía cinética de sistemas de partículas
Para una partícula, o para un sólido rígido que no este rotando, la energía cinética cae a cero cuando el cuerpo para. Sin embargo, para sistemas que contienen muchos cuerpos con movimientos independientes, que ejercen fuerzas entre ellos y que pueden (o no) estar rotando, esto no es del todo cierto. Esta energía es llamada 'energía interna'. La energía cinética de un sistema en cualquier instante de tiempo es la suma simple de las energías cinéticas de las masas, incluyendo la energía cinética de la rotación.
Un ejemplo de esto puede ser el Sistema Solar. En el centro de masas del sistema solar, el Sol está (casi) estacionario, pero los planetas y planetoides están en movimiento sobre él. Así en un centro de masas estacionario, la energía cinética está aún presente. Sin embargo, recalcular la energía de diferentes marcos puede ser tedioso, pero hay un truco. La energía cinética de un sistema de diferentes marcos inerciales puede calcularse como la simple suma de la energía en un marco con centro de masas y añadir en la energía el total de las masas de los cuerpos que se mueven con velocidad relativa entre los dos marcos.
Esto se puede demostrar fácilmente:
...