ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Evolución histórica


Enviado por   •  7 de Septiembre de 2014  •  Tesis  •  2.448 Palabras (10 Páginas)  •  265 Visitas

Página 1 de 10

Cálculo, rama de las matemáticas que se ocupa del estudio de los incrementos en las variables, pendientes de curvas, valores máximo y mínimo de funciones y de la determinación de longitudes, áreas y volúmenes. Su uso es muy extenso, sobre todo en ciencias e ingeniería, siempre que haya cantidades que varíen de forma continua.

II. Evolución histórica

El cálculo se deriva de la antigua geometria griega. Democrito calculó el volumen de piramides y conos, se cree que considerándolos formados por un número infinito de secciones de grosor infinitesimal (infinitamente pequeño), y Eudoxo y Arquímides utilizaron el "método de agotamiento" para encontrar el área de un círculo con la exactitud requerida mediante el uso de polígonos inscritos. En el siglo XVII, Francesco B. Cavalieri yEvangelista Torricelli ampliaron el uso de los infinitesimales, y Descartes y Pierre de Fermat utilizaron el algebra para encontrar el área y las tangentes. Fermat e Isaac Barrow tenían la certeza de que ambos cálculos estaban relacionados, aunque fueron Isaac Newton (hacia 1660) y Gottfried W. Leibniz (hacia 1670) quienes demostraron que son inversos, lo que se conoce como teorema fundamental del cálculo. El descubrimiento de Newton, a partir de su teoría de la gravedad, fue anterior al de Leibniz, pero el retraso en su publicación aún provoca disputas sobre quién fue el primero. Sin embargo, terminó por adoptarse la notación de Leibniz.

En el siglo XVIII aumentó considerablemente el número de aplicaciones del cálculo, pero el uso impreciso de las cantidades infinitas e infinitesimales, así como la intuición geométrica, causaban todavía confusión y controversia sobre sus fundamentos. Uno de sus críticos más notables fue el filósofo irlandés George Berkeley. En el siglo XIX los analistas matemáticos sustituyeron esas vaguedades por fundamentos sólidos basados en cantidades finitas: Bernhard Bolzano y Augustin Louis Cauchy definieron con precisión los límites y las derivadas; Cauchy y Bernhard Riemann hicieron lo propio con las integrales, y Julius Dedekind y Karl Weierstrass con los números reales. Por ejemplo, se supo que las funciones diferenciables son continuas y que las funciones continuas son integrables, aunque los recíprocos son falsos. En el siglo XX, el análisis no convencional, legitimó el uso de los infinitesimales. Al mismo tiempo, la aparición de los ordenadores o computadoras ha incrementado las aplicaciones del cálculo.

III. Cálculo diferencial

El cálculo diferencial estudia los incrementos en las variables. Sean x e y dos variablesrelacionadas por la ecuación y = f(x), en donde la función f expresa la dependencia del valor de y con los valores de x. Por ejemplo, x puede ser tiempo e y la distancia recorrida por un objeto en movimiento en el tiempo x. Un pequeño incremento h en la x, de un valor x0 ax0 + h, produce un incremento k en la y que pasa de y0 = f(x0) a y0 + k = f(x0 + h), por lo que k = f(x0 + h) - f(x0). El cociente k/hrepresenta el incremento medio de la y cuando la x varía de x0 a x0 + h. La gráfica de la función y = f(x) es una curva en el plano xy yk/h es la pendiente de la recta AB entre los puntos A = (x0,y0) y B = (x0 + h, y0 + k) en esta curva; esto se muestra en la figura 1, en donde h = AC y k = CB, así es que k/h es latangente del ángulo BAC.

Si h tiende hacia 0, para un x0 fijo, entoncesk/h se aproxima al cambio instantáneo de la yen x0; geométricamente, B se acerca a A a lo largo de la curva y = f(x), y la recta AB tiende hacia la tangente a la curva, AT, en el punto A.Por esto, k/h tiende hacia la pendiente de latangente (y por tanto de la curva) en A. Así, se define la derivada f'(x0) de la función y = f(x) enx0 como el límite que toma k/h cuando h tiende hacia cero, lo que se escribe:

Este valor representa la magnitud de la variación de y y la pendiente de la curva en A.Cuando, por ejemplo, x es el tiempo e y es la distancia, la derivada representa la velocidad instantánea. Valores positivos, negativos y nulos de f'(x0) indican que f(x) crece, decrece o es estacionaria respectivamente en x0. La derivada de una función es a su vez otra función f'(x) de x, que a veces se escribe comody/dx, df/dx o Df. Por ejemplo, si y = f(x) = x2 (parábola), entonces

por lo que k/h = 2x0 + h, que tiende hacia 2x0 cuando h tiende hacia 0. La pendiente de la curva cuando x = x0 es por tanto 2x0, y la derivada de f(x) = x2 es f'(x) = 2x. De manera similar, la derivada de xm es mxm-1 para una mconstante. Las derivadas de las funciones más corrientes son bien conocidas (véase la tabla adjunta con algunos ejemplos).

Para calcular la derivada de una función, hay que tener en cuenta unos cuantos detalles: primero, se debe tomar una h muy pequeña (positiva o negativa), pero siempre distinta de cero. Segundo, no toda función f tiene una derivada en todas las x0, pues k/h puede no tener un límite cuando h 0; por ejemplo, f(x) = |x| no tiene derivada en x0 = 0, pues k/h es 1 o -1 según que h > 0 o h < 0; geométricamente, la curva tiene un vértice (y por tanto no tienetangente) en A = (0,0). Tercero, aunque la notación dy/dx sugiere el cociente de dos números dy y dx (que indican cambios infinitesimales en y y x) es en realidad un solo número, el límite de k/h cuando ambas cantidades tienden hacia cero.

Diferenciación es el proceso de calcular derivadas. Si una función f se forma al combinar dos funciones u y v, su derivada f' se puede obtener a partir de u, v y sus respectivas derivadas utilizando reglas sencillas. Por ejemplo, la derivada de la suma es la suma de las derivadas, es decir, si f = u +v (lo que significa que f(x) = u(x) + v(x) para todas las x) entonces f' = u' + v'. Una regla similar se aplica para la diferencia: (u - v)' = u' -v'. Si una función se multiplica por una constante, su derivada queda multiplicada por dicha constante, es decir, (cu)' = cu' para cualquier constante c. Las reglas para productos y cocientes son más complicadas: sif = uv entonces f' = uv' + u'v, y si f = u/ventonces f'= (u'v-uv')/v2 siempre que v(x) 0. Utilizando estas reglas se pueden derivar funciones complicadas; por ejemplo, las derivadas de x2 y x5 son 2x y 5x4, por lo que la derivada de la función 3x2 - 4x5 es (3x2 - 4x5)' = (3x2)' - (4x5)' = 3•(x2)' - 4•(x5)' = 3•(2x) - 4•(5x4) = 6x - 20x4. En general, la derivada de un polinomio cualquiera f(x) = a0 + a1x + ... + anxnes f'(x) = a1 + 2a2x + ... + nanxn-1;

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com