ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Farmacologia


Enviado por   •  9 de Agosto de 2014  •  5.599 Palabras (23 Páginas)  •  215 Visitas

Página 1 de 23

FARAMACOLOGIA es la ciencia que estudia el comportamiento de los fármacos dentro de un ser

viviente”, también se puede definir como “la ciencia que estudia las interacciones

entre sistemas vivos y las moléculas”, especialmente los agentes xenobióticos.

MECANISMO DE TRANSFERENCIA DE MOLECULAS A TRAVES DE UNA MEMBRANA: En biología celular se denomina transporte de membrana biológica al conjunto de mecanismos que regulan el paso de solutos, como iones y pequeñas moléculas, a través de membranas plasmáticas, esto es, bicapas lipídicas que poseen proteínas embebidas en ellas. Dicha propiedad se debe a la selectividad de membrana, una característica de las membranas celulares que las faculta como agentes de separación específica de sustancias de distinta índole química; es decir, la posibilidad de permitir la permeabilidad de ciertas sustancias pero no de otras.1

Los movimientos de casi todos los solutos a través de la membrana están mediados por proteínas transportadoras de membrana, más o menos especializadas en el transporte de moléculas concretas. Puesto que la diversidad y fisiología de las distintas células de un organismo está relacionada en buena medida con su capacidad de captar unos u otros elementos externos, se postula que debe existir un acervo de proteínas transportadoras específico para cada tipo celular y para cada momento fisiológico determinado;1 dicha expresión diferencial se encuentra regulada mediante: la transcripción diferencial de los genes codificantes para esas proteínas y su traducción, es decir, mediante los mecanismos genético-moleculares, pero también a nivel de la biología celular: dichas proteínas pueden requerir de activación mediada por rutas de señalización celular, activación a nivel bioquímico o, incluso, de localización en vesículas del citoplasma

Termodinámicamente, el flujo de sustancias de un compartimento a otro puede realizarse a favor o en contra de un gradiente, ya sea de concentración, o electroquímico. Si el intercambio de sustancias se realiza a favor del gradiente, esto es, en el sentido de los potenciales decrecientes, el requerimiento de energía externo al sistema es nulo; si, en cambio, el transporte se hace en contra del gradiente, se requiere el aporte de energía, energía metabólica en nuestro caso.3 Por ejemplo, un mecanismo químico de separación clásico que no requiere un aporte de energía externo es la diálisis: en ella, una membrana semipermeable separa dos soluciones que difieren en la concentración de un mismo soluto. Si la membrana permite el paso de agua pero no el del soluto, sucede que el agua fluye hacia el compartimento más concentrado en soluto, a fin de establecer unequilibrio en el cual la energía del sistema sea mínima. Para que suceda este flujo, puesto que el agua se desplaza de un lugar muy concentrado a uno muy diluido en disolvente (en cuanto a soluto, se da la situación opuesta), y, por ello, lo hace a favor de gradiente, no se requiere un aporte de energía externo.

Diagrama de una membrana plasmática. 1. fosfolípido 2. colesterol 3. glicolípido 4. glúcido 5. proteína transmembrana 6. glicoproteína 7. proteína anclada a un fosfolípido 8. glicoproteína periférica.

La naturaleza de las membranas biológicas, especialmente la de sus lípidos, es anfipática, lo que se traduce en que forman una bicapa que alberga una parte interna hidrofóbica y una externa hidrofílica, permite que surja una posibilidad de transporte, la difusión simple o difusión pasiva, que consiste en la difusión de sustancias a su través sin gasto de energía metabólica y sin ayuda de proteínas transportadoras. En el caso de que la sustancia a transportar posea una carga neta, difundirá no sólo en respuesta a un gradiente de concentración, sino también al potencial de membrana, esto es, al gradiente electroquímico.

Permeabilidad relativa de una bicapa de fosfolípidos a distintas sustancias1

Tipo de sustancia Ejemplos Comportamiento

Moléculas polares pequeñas sin carga Urea, agua, etanol

Permean, total o parcialmente

Grandes moléculas polares sin carga glucosa, fructosa

No permean

Iones K+, Na+, Cl-, HCO3- No permean

Moléculas polares cargadas ATP, aminoácidos, glucosa-6-fosfato

No permean

Diagrama de una membrana plasmática. 1. fosfolípido 2. colesterol 3. glicolípido 4. glúcido 5. proteína transmembrana 6. glicoproteína 7. proteína anclada a un fosfolípido 8. glicoproteína periférica.

Puesto que son pocas las moléculas que son capaces de difundir a través de una membrana lipídica, la mayoría de los procesos de transporte involucran a proteínas de transporte. Se trata de proteínas transmembrana que poseen multitud de hélices alfa inmersas en la matriz lipídica o bien, al menos en bacterias, beta láminas.4 Dicha estructura probablemente implique una vía de entrada a través de entornos hidrofílicos proteicos que causarían una disrupción en el medio altamente hidrofóbico constituido por los lípidos.1 Las proteínas intervienen de diversas formas en el transporte: actúan tanto como bombas impulsadas por ATP, esto es, por Termodinámica

Un proceso fisiológico sólo puede llevarse a cabo si no contraviene los principios termodinámicos elementales. El transporte de membrana obedece algunas leyes físicas que definen sus capacidades y por ello su utilidad biológica.

Un principio general de la termodinámica que gobierna la transferencia de sustancias a través de membranas u otras superficies es que el cambio de la energía libre, ΔG, para el transporte de un mol de una sustancia concentrada a C1 en un compartimento, hacia un lugar en el que esté a C2, es de:5

Por lo que si C2 es menor que C1, ΔG es también negativo, y el proceso es termodinámicamente favorable. Conforme se va transfiriendo la energía de un compartimento a otro, y salvo que intervengan otros factores, se llega a un equilibrio donde C2=C1, y por ello ΔG=0. No obstante, existen tres circunstancias en las que puede evitarse esta igualdad, circunstancias vitales para el desempeño de la función in vivo de las membranas biológicas:5

• Las macromoléculas de un lado de la membrana pueden unir específicamente a un determinado compuesto o modificarlo químicamente. De este modo, aunque la concentración del compuesto sea realmente diferente a ambos lados de la membrana, su disponibilidad reducida en uno de los compartimentos puede hacer que, a efectos prácticos, no exista un gradiente que favorezca el transporte.

• Puede existir un potencial eléctrico de membrana a través de ella que influya en la distribución de iones. Por ejemplo, para un proceso en el que el transporte de iones se

...

Descargar como (para miembros actualizados) txt (38 Kb)
Leer 22 páginas más »
Disponible sólo en Clubensayos.com