ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fundamentos Matemáticos Nombre del profesor:


Enviado por   •  31 de Enero de 2018  •  Práctica o problema  •  1.394 Palabras (6 Páginas)  •  656 Visitas

Página 1 de 6

Nombre: Edgar Efrain Ku Borges Matrícula: 02845687

Nombre del curso:

Fundamentos Matemáticos Nombre del profesor:

Maricarmen Vázquez Roji

Módulo:

2. La integral y sus aplicaciones.

Actividad:

Evidencia 2.

Fecha: Junio 02, 2017

Bibliografía:

Torres Arboleda, C.M. (s.f). La ecuación Verhulst. mayo 31, 2017, de Scribd Sitio web: https://es.scribd.com/doc/36932881/La-ecuacion-Verhulst

Zarate Mirón, V. E.. (2009). Apéndice A. Modelo de crecimiento Logístico. mayo 31, 2017, de UDLAP Sitio web: http://catarina.udlap.mx/u_dl_a/tales/documentos/lec/zarate_m_ve/apendiceA.pdf

Wikipedia. (2017). Frank Fenner. mayo 31, 2017, de Fundación Wikimedia Inc. Sitio web: https://es.wikipedia.org/wiki/Frank_Fenner#cite_note-11

GON. (2015). ¿Cuantos humanos puede soportar la tierra?. junio 01, 2017, de Espaciociencia.com Sitio web: http://espaciociencia.com/cuantos-humanos-puede-soportar-la-tierra/

Banco Mundial. (s.f). Población total. mayo 31, 2017, de Grupo Banco Mundial Sitio web: http://datos.bancomundial.org/indicador/SP.POP.TOTL?end=2015&start=1995

Dávila, I. (2011). Formula de derivadas de funciones trigonométricas. Junio 02, 2017, de Instituto Tecnológico de Saltillo Sitio web: http://www.itsbasicas.com/davila/formulas_de_derivadas_funciones_trigonometricas.pdf

Parte 1:

Realiza correctamente lo que se te indica:

Resuelve la integral ∫x^2 In(x)dx

Primero debes determinar la formula o método que vas a utilizar, para ello observa el integrado y contesta a la siguiente pregunta:

¿Cumple con alguno de los casos para aplicar la técnica de integración por partes?,

Si cumple, ya que está formada por dos funciones

¿Con cuál?

Una función logarítmica y una función algebraica.

Si la integral se resuelve por medio de integración por partes, entonces utiliza las siglas LATE para seleccionar u y dv.

Por ultimo utiliza la fórmula para integrar por partes.

∫▒〖x^2 Inx dx = (Inx)(x^3/3) - ∫▒(x^3/3)(1/x dx) 〗

∫▒〖x^2 Inx dx = (Inx)(x^3/3) - ∫▒〖x^3/3x dx〗〗

∫▒〖x^2 Inx dx = (Inx)(x^3/3) - 1/3 ∫▒〖x^3 dx〗〗

∫▒〖x^2 Inx dx = (Inx)(x^3/3) - 1/3〗 (x^3/3)+C

∫▒〖x^2 Inx dx = (x^3 Inx)/3 - x^3/9 + C 〗

Resuélvela con sustitución trigonométrica

∫▒〖√(x^2-25)/x dx〗

Dibuja el triángulo que vasa a utilizar:

sohcahtoa

Encuentra las sustituciones

x=5secθ

dx=5secθtanθdθ

√(x^2-25)= 5tanθ

Utiliza las sustituciones para cambiar la integral a una integral con funciones trigonométricas:

¿Cómo quedo expresada la integral?

∫▒〖√(x^2-25)/x dx〗

∫▒〖5tanθ/5secθ 5secθtanθdθ〗

∫▒〖5tanθ/5secθ 5secθtanθdθ〗

∫▒5tanθtanθdθ

∫▒〖√(x^2-25) + 〖5tan〗^(-1) [5/√(x^2-25)]+C〗

Resuélvela con las formulas anteriores:

F(x)= √(x^2-25) + 〖5tan〗^(-1) [5/√(x^2-25)]+C

Utiliza el método de fracciones parciales para resolver las siguientes integrales

∫(〖5x〗^2+20x+6)/(x^3+〖2x〗^2+x) dx

Factoriza el denominador para identificar qué tipo de factores son:

x^3+2x^2+x

x(x+1)(x+1)

x〖(x+1)〗^2

Escribe la función como la suma de fracciones parciales.

(〖5x〗^2+20x+6)/(x〖(x+1)〗^2 )

Encuentra el valor de las constantes A, B, C, D, etc. Y resuelve la integral.

Nota: si el grado de los polinomios P y Q son iguales o se cumple que grado P>grado Q, entonces se debe efectuar la división de polinomios y después utilizar fracciones parciales.

(〖5x〗^2+20x+6)/(x(x+1)^2 ) = A/x+B/(x+1)+C/(x+1)^2

x(x+1)^2 ((〖5x〗^2+20x+6)/(x(x+1)^2 ))=(A/x+B/(x+1)+C/(x+1)^2 )x(x+1)^2

〖5x〗^2+20x+6=A〖(x+1)〗^2+Bx(x+1)+Cx

〖5x〗^2+20x+6=〖Ax〗^2+2Ax+A+〖Bx〗^2+Bx+Cx

〖5x〗^2+20x+6=(A+B) x^2+x(2A+B+C)+A

A + B = 5 → 6 + B = 5 → B = 5 – 6 → B = -1

2A + B + C = 20 → 2(6)+ (-1) + C= 20 → 12 – 1 + C= 20 → C=21-12 C = 9

A = 6

(〖5x〗^2+20x+6)/(x(x+1)^2 ) = 6/x+(-1)/(x+1)+9/(x+1)^2

∫▒〖(〖5x〗^2+20x+6)/(x(x+1)^2 ) dx=∫▒〖6/x dx + -∫▒〖1/(x+1) dx + ∫▒〖9/〖(x+1)〗^2 dx〗〗〗〗

∫▒〖(〖5x〗^2+20x+6)/(x^2+2x+x) dx= 6In(x) -In(x+1) -9/(x+1) + C〗

∫(〖2x〗^3-〖4x〗^2-15x+5)/(x^2-2x-8) dx Efectúa la división de polinomios.

2x+(x+5)/(x^2-2x-8) dx

Factoriza el denominador para identificar qué tipo de factores son:

(x+2)(x-4)

x^2-4x+2x-8

x^2-2x-8

Escribe la función como la suma de fracciones parciales.

2x+(x+5)/(x^2-2x-8) dx=2x dx+(x+5)/((x+2)(x-4))

Encuentra el valor de las constantes A, B, C, D, etc. Y resuelve la integral.

(x+5)/((x+2)(x-4))= A/(x+2)+B/(x-4)

(x+2)(x-2)[(x+5)/(x+2)(x-4) ]=[A/(x+2)+B/(x-4)](x+2)(x-4)

x+5=A(x-4)+B(x+2)

...

Descargar como (para miembros actualizados) txt (10 Kb) pdf (160 Kb) docx (575 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com