FÍSICA EN PROCESOS INDUSTRIALES
Enviado por Fedor Bancoff • 10 de Febrero de 2022 • Apuntes • 913 Palabras (4 Páginas) • 119 Visitas
Movimiento:
Leyes de Newton.
Fedor Bancoff.
FÍSICA EN PROCESOS INDUSTRIALES
Instituto IACC
29-08-2021.
Desarrollo.
1.- Los sistemas de engranaje son muy utilizados en el levantamiento o pesaje de cargas, apalancada por una polea común que tiene la función de desviar la fuerzas. Las poleas son utilizadas en grúas, máquinas de ejercicios, izamiento de cargas, ascensores, motores de combustión interna, etc. Considere el siguiente diagrama, donde se representa un sistema de poleas con dos masas distintas sometidas a la misma aceleración.
[pic 1]
Considere los siguientes supuestos:
- Cuerda es inextendible.
- Despreciar la fuerza de roce ejercida por la cuerda.
- Considere la aceleración de gravedad 10 ( 𝑚 𝑠 2 )
La masa m1 es de 4 kg y la masa m2 es de 2 kg.
Con respecto a los datos entregados, responda:
a). Analice a que aplicación de partícula corresponde el diagrama propuesto. Argumente.
Según los datos entregados en el diagrama podemos mencionar que sobre este cuerpo existe una fuerza neta debido a que hay una aceleración, ya que sobre ambos cuerpos se ejercen fuerzas con distintas magnitudes ya que como podemos apreciar M1 es mayor que M2 con esto podemos determinar que sobre este cuerpo existe o se ejerce una fuerza neta mayor por la masa ya que hay una aceleración en este cuerpo “M2” además podemos ver que al moverse M1 hacia un lado y M2 hacia el otro lados o en sentidos opuestos ambos cuerpos tienen una aceleración con el mismo valor, pero como se menciona en direcciones o sentidos opuestos.
b). Realice el diagrama de cuerpo libre, indicando el sentido de las fuerzas para las dos masas.
(t: tensión de la cuerda)[pic 2]
c). Calcule el valor de la tensión de la cuerda.
Desarrollo 1.
a=?
F = m * a
Peso M1 = 4 Kg x 9,8 m/seg2
Peso = 39,2 N.
Peso M2 = 2 Kg x 9,8 m/seg2
Peso = 19,6 N.
P1 - P2 = (m1+m2) x a
39,2 kg m/s2 – 19,6 Kg x m/s2 = (4 kg +2 kg) x a
19,6 kg x m/s2 = 6 kg
a= [pic 3]
a= 3,266666667 ( )[pic 4]
Desarrollo 2.
g=9,8( ))[pic 5]
ΣF = m1 * a
P1 – t = m1 * a
-t =(m1 *a) - P1
t= - (m1 * a ) + (m1 * g)
t= m1 (-a - g)
t= 4 kg * (-3,266666667( ) + 9,8( ))[pic 6][pic 7]
t= 4 kg * (6,53333333 ( ))[pic 8]
t= 26,13333332 [pic 9]
t= 26,13333332 N.
2.- Considere los siguientes casos cotidianos y argumente su relación con las tres leyes de movimiento de Newton revisadas esta semana. Complete la siguiente tabla siguiendo el ejemplo planteado. (Nota: para cada caso puede existir que apliquen más leyes, lo importante serán sus argumentos):
Caso cotidiano. | Ley del movimiento. | Argumentos. |
Estar sentado en un sofá | 3ª Ley. Principio de | Al estar sentado en el sofá ejerzo |
Subir cambios en el auto | 2ª da Ley de Newton aceleración. | La segunda ley de Newton se aplica cuando El vehículo al estar sometido a una cuesta o camino |
Sufrir una caída en el | 1ª ley de Newton Inercia. | Todo vehículo en movimiento en este caso los vagones del metro y a una velocidad contante el pasajero se mantiene de una forma estática, pero al no estar sujeto y el metro se detiene de forma repentina, la persona o cualquier cuerpo con peso seguirá con la misma velocidad que lleva el metro antes de esta forma repentina de detención y al no estar sujeta a ningún elemento como cinturón de seguridad hace que se cumpla la 1ª ley de Newton Inercia. |
Derrapar en auto en un | 1ª ley de Newton Inercia. | Si el vehículo lleva una velocidad constante sumándole la fricción que genera los neumáticos con el piso o asfalto de la calle que pone resistencia y si la velocidad aumenta, el vehículo derrapará. |
Impactar un balón de | 3° ley de newton Acción y reacción. | Cuando dos cuerpos interactúan la fuerza que se ejerce en ese cuerpo será ejercida sobre el primero en este caso el pie genera una fuerza que es empleada para que el balón rompa su estado de reposo, una acción y reacción. |
...