ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Gregor Mendel

Gareki16 de Junio de 2014

3.212 Palabras (13 Páginas)205 Visitas

Página 1 de 13

En los cruzamientos de Mendel la segunda generación o F2 fue obtenida por autofecundación de las plantas de la F1. Esto puede describirse en una tabla denominada Tablero de Punnett.

El tablero de Punnett nos permite determinar las proporciones genotípicas esperadas. También nos permite determinar las proporciones fenotípicas.

Proporciones Genotípicas de la F2: 1DD:2Dd:1dd Proporciones Fenotípicas de la F2: 3 altas: 1 enana (3D_:1dd)

Primera Ley de Mendel o Ley de miembro para determinar la constitución genética del gameto.

Confirmación de la hipótesis de la Primera Ley de Mendel: Con las observaciones realizadas, Mendel pudo formular una hipótesis acerca de la segregación. Para probar esta hipótesis Mendel autofecundó las plantas de la F2. Si esta ley era correcta, él podía predecir los resultados y realmente fueron los esperados.

Monografias.com

Con estos resultados se pueden confirmar los genotipos de los individuos de la F2:

Monografias.com

Monografias.com

Retrocruza: Cruzamiento de un individuo F1 heterocigota con uno de los parentales homocigotas. En el caso de las plantas de la arveja sería: Dd x DD o Dd x dd. Generalmente se realiza con el individuo homocigota recesivo.

Cruzamiento de Prueba: (testcross) Cruzamiento de cualquier individuo con un individuo homocigota recesivo para determinar su genotipo.

Cruzamiento monohíbrido: un cruzamiento entre padres que difieren en un sólo par de genes (generalmente AA o aa).

Monohíbrido: la descendencia de dos padres homocigotas para alelos alternativos de un par de genes. Los monohíbridos resultan útiles para describir la relación entre los alelos. Cuando un individuo es homocigota para un alelo mostrará el fenotipo para ese alelo. Es el fenotipo del heterocigota el que nos permite determinar la relación de los alelos (dominante o recesivo).

Dominancia: Habilidad de un alelo para expresar su fenotipo a expensas de un alelo alternativo. Es la forma principal de interacción entre alelos. Generalmente el alelo dominante formará un producto génico que el recesivo no puede producir. El alelo dominante se expresará siempre que esté presente.

Segunda Ley De Mendel - Presentation Transcript

Reproducción y herencia Biología y Geología 4.º ESO Segunda ley de Mendel Los caracteres recesivos que no aparecen en la primera generación filial (F 1 ), reaparecen en la segunda generación filial (F 2 ) en la proporción de tres dominantes por un recesivo (3:1).

Reproducción y herencia Biología y Geología 4.º ESO X Híbridos resultantes de la F 1 Autofecundación de los híbridos con semilla amarilla que obtuvo de la fecundación de ( P) PRIMERA GENERACIÓN FILIAL ( F1) Segunda ley de Mendel

Reproducción y herencia Biología y Geología 4.º ESO Aa Gametos X Genotipo Aa Híbridos resultantes de la F 1 Segunda ley de Mendel A A a a

Reproducción y herencia Biología y Geología 4.º ESO Aa Gametos X Genotipo Aa Híbridos resultantes de la F 1 AA 25% aA 25% Aa 25% aa 25% Segunda ley de Mendel A A a a

Reproducción y herencia Biología y Geología 4.º ESO Los caracteres recesivos que no aparecen en la primera generación filial (F 1 ), reaparecen en la segunda generación filial (F 2 ) en la proporción de tres dominantes por un recesivo (3:1). AA 25% aA 25% Aa 25% aa 25% Segunda ley de Mendel

Reproducción y herencia Biología y Geología 4.º ESO Los caracteres recesivos que no aparecen en la primera generación filial (F 1 ), reaparecen en la segunda generación filial (F 2 ) en la proporción de tres dominantes por un recesivo (3:1). Aa Gametos X Genotipo Aa Híbridos resultantes de la F 1 AA 25% aA 25% Aa 25% aa 25% A A a a

Primera ley de Mendel

Enunciado de la ley â A esta ley se le llama también Ley de la uniformidad de los híbridos de la primera generación (F1). , y dice que cuando se cruzan dos variedades individuos de raza pura ambos (homocigotos ) para un determinado carácter, todos los híbridos de la primera generación son iguales.

El experimento de Mendel.-

Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.

Interpretación del experimento.-

El polen de la planta progenitora aporta a la descendencia un alelo para el color de la semilla, y el óvulo de la otra planta progenitora aporta el otro alelo para el color de la semilla ; de los dos alelos, solamente se manifiesta aquél que es dominante (A), mientras que el recesivo (a) permanece oculto.

La primera ley de Mendel se cumple también para el caso en que un determinado gen de lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche" (Mirabilis jalapa). Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas. La interpretación es la misma que en el caso anterior, solamente varía la manera de expresarse los distintos alelos.

Segunda ley de Mendel

Enunciado de la ley â A la segunda ley de Mendel también se le llama de la separación o disyunción de los alelos.

El experimento de Mendel.

Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior (figura 1) y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura 3. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación. Interpretación del experimento.

Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.

Otros casos para la segunda ley.

En el caso de los genes que presentan herencia intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas de la primera generación filial (F1) del cruce que se observa en la figura 2 y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas, en la proporción que se indica en el esquema de la figura 4. También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.

Retrocruzamiento

En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo.

Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.(figura 5).

Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%. (figura 6)

La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigota recesiva (aa).

Tercera ley de Mendel

Enunciado de la ley â Se conoce esta ley como la de la herencia independiente de caracteres, y hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.

El experimento de Mendel.

Mendel cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres). (Figura 7)

Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados, y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa.

Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas y que pueden verse en la figura 8.

En el cuadro de la figura 9 se ven las semillas que aparecen y en las proporciones que se indica.

Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).

Asímismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley.

Interpretación del experimento.

Los resultados de los experimentos de la tercera ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen

...

Descargar como (para miembros actualizados) txt (20 Kb)
Leer 12 páginas más »
Disponible sólo en Clubensayos.com