ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

LOS POLIMEROS


Enviado por   •  12 de Julio de 2015  •  1.567 Palabras (7 Páginas)  •  192 Visitas

Página 1 de 7

a materia esta formada por moléculas que pueden ser de tamaño normal o moléculas gigantes llamadas polímeros.

Los polímeros se producen por la unión de cientos de miles de moléculas pequeñas denominadas monómeros que forman enormes cadenas de las formas más diversas. Algunas parecen fideos, otras tienen ramificaciones. algunas más se asemejan a las escaleras de mano y otras son como redes tridimensionales.

Existen polímeros naturales de gran significación comercial como el algodón, formado por fibras de celulosas. La celulosa se encuentra en la madera y en los tallos de muchas plantas, y se emplean para hacer telas y papel. La seda es otro polímero natural muy apreciado y es una poliamida semejante al nylon. La lana, proteína del pelo de las ovejas, es otro ejemplo. El hule de los árboles de hevea y de los arbustos de Guayule, son también polímeros naturales importantes.

Sin embargo, la mayor parte de los polímeros que usamos en nuestra vida diaria son materiales sintéticos con propiedades y aplicaciones variadas.

Lo que distingue a los polímeros de los materiales constituídos por moléculas de tamaño normal son sus propiedades mecánicas. En general, los polímeros tienen una excelente resistencia mecánica debido a que las grandes cadenas poliméricas se atraen. Las fuerzas de atracción intermoleculares dependen de la composición química del polímero y pueden ser de varias clases.

Fuerzas de Van der Waals.

También llamadas fuerzas de dispersión, presentes en las moléculas de muy baja polaridad, generalmente hidrocarburos. Estas fuerzas provienen de dipolos transitorios: como resultado de los movimientos de electrones, en cierto instante una porción de la molécula se vuelve ligeramente negativa, mientras que en otra región aparece una carga positiva equivalente. Así se forman dipolos no-permanentes. Estos dipolos producen atracciones electroestáticas muy débiles en las moléculas de tamaño normal, pero en los polímeros, formados por miles de estas pequeñas moléculas, las fuerzas de atracción se multiplican y llegan a ser enormes, como en el caso del polietileno.

En la tabla 1.1 se observa como cambian la densidad y la temperatura de fusión, al aumentar el número de átomos de carbono en la serie de los hidrocarburos. Los compuestos más pequeños son gases a la temperatura ambiente. al aumentar progresivamente el número de carbonos, los compuestos se vuelven líquidos y luego sólidos, cada vez con mayor densidad y mayor temperatura de fusión, hasta llegar a los polietilenos con densidades que van de 0,92 a 0, 96 g / cm3 y temperaturas de fusión entre 105 y 135° C.

Hidrocarburo

Fórmula

Peso molecular

Densidad

T. de fusión

Metano

CH4

16

gas

-182 °C

Etano

C2H6

30

gas

-183 °C

Propano

C3H8

44

gas

-190 °C

butano

C4H10

58

gas

-138 °C

Pentano

C5H12

72

0,63

-130 °C

Hexano

C6H14

86

0,66

-95 °C

Heptano

C7H16

100

0,68

-91 °C

Octano

C8H18

114

0,70

-57 °C

Nonano

C9H20

128

0,72

-52 °C

Decano

C10H22

142

0,73

-30 °C

Undecano

C11H24

156

0,74

-25 °C

Dodecano

C12H26

170

0,75

-10 °C

Pentadecano

C15H32

212

0,77

10 °C

Eicosano

C20H42

283

0,79

37 °C

Triacontano

C30H62

423

0,78

66 °C

Polietileno

C2000H4002

28000

0,93

100 °C

Densidad y temperatura de fusión de hidrocarburos.

Fuerzas de atracción.

Debidas a dipolos permanentes, como en el caso de los poliésteres. Estas atracciones son mucho más potentes y a ellas se debe la gran resistencia tensil de las fibras de los poliésteres.

Enlaces de hidrógeno.

Como en las poliamidas (nylon).

Estas interacciones son tan fuertes, que una fibra obtenida con estas poliamidas tiene resistencia tensil mayor que la de una fibra de acero de igual masa.

Otros polímeros.

Hay atracciones de tipo iónico que son las más intensas:

Un ejemplo sería el copolímero etileno-ácido acrílico, que al ser neutralizado con la base M(OH)2, producirá la estructura indicada. Estos materiales se llaman ionómeros y se usan, por ejemplo, para hacer películas transparentes de alta resistencia.

Tipo de enlace

Kcal / mol

Van der Waals en CH4

2,4

Dipolos permanentes

3 a 5

Enlaces hidrógeno

5 a 12

Iónicos

mayores a 100

Energía requerida para romper cada enlace.

La fuerza total de atracción entre las moléculas del polímero, dependería del número de las interacciones. Como máximo, sería igual a la energía de enlace según la tabla, multiplicada por el número de átomos de carbono en el caso del polietileno o por el número de carbonílicos C = O en los poliésteres, etc. rara vez se alcanza este valor máximo, porque las cadenas de los polímeros no pueden, por lo general, acomodarse con la perfección que sería requerida.

Concepto y clasificación.

Un polímero (del griego poly, muchos; meros, parte, segmento) es una sustancia cuyas moléculas son, por lo menos aproximadamente, múltiplos de unidades de peso molecular bajo. La unidad de bajo peso molecular es el monómero. Si el polímero es rigurosamente uniforme en peso molecular y estructura molecular, su grado de polimerización es indicado por un numeral griego, según el número de unidades de monómero que contiene; así, hablamos de dímeros, trímeros, tetrámero, pentámero

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com