ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Dinamica


Enviado por   •  16 de Noviembre de 2011  •  2.125 Palabras (9 Páginas)  •  353 Visitas

Página 1 de 9

INTRODUCCIÓN.

La falta de conocimiento sobre muchísimos conceptos es a veces la causa de que el individuo no logre el mayor de los rendimientos deseados para el pleno desarrollo de sus potencialidades; por consiguiente, en la siguiente entrega se presentan o se expondrán un conjunto de términos relativos a Dinámica, velocidad angular entre otras que permitirá la adquisición de nuevos saberes con el fin de comprender lo que trata el tema . Por otra parte; hagámonos una pregunta: ¿Qué cosas se mueven? Un automóvil que viaja hacia la costa; una hoja que, agitada por el viento, cae de un árbol; una pelota que es pateada por un futbolista; un atleta que corre tras una meta; un electrón que vibra en su entorno; la Tierra alrededor del Sol. Quizás deberíamos preguntarnos ¿hay algo que no se mueva? Como la respuesta parece obvia (“todo se mueve”) aboquémonos a averiguar ¿qué es movimiento? si nos referimos a un objeto que se mueve, diríamos que el objeto tiene movimiento si cambia de posición a través del tiempo. Entonces, se define el movimiento como un cambio de posición de un cuerpo con respecto a otro cuerpo (donde se sitúa un observador), durante un espacio de tiempo. Cabe destacar que existen ecuaciones que permite averiguarlo y es por ello el fin de este trabajo.

Desarrollo.

1. Concepto De Dinámica.

La dinámica es la parte de la física que describe la evolución en el tiempo de un sistema físico en relación con las causas que provocan los cambios de estado físico y/o estado de movimiento. El objetivo de la dinámica es describir los factores capaces de producir alteraciones de un sistema físico, cuantificarlos y plantear ecuaciones de movimiento o ecuaciones de evolución para dicho sistema de operación.

El estudio de la dinámica es prominente en los sistemas mecánicos (clásicos, relativistas o cuánticos), pero también en la termodinámica y electrodinámica. En otros ámbitos científicos, como la economía o la biología, también es común hablar de dinámica en un sentido similar al de la física, para referirse a las características de la evolución a lo largo del tiempo del estado de un determinado sistema.

2. Ecuaciones De Movimiento.

 Ecuaciones de movimiento en mecánica clásica

Históricamente el primer ejemplo de ecuación del movimiento que se introdujo en física fue la segunda ley de Newton para sistemas físicos compuestos de agregados partículas materiales puntuales. En estos sistemas el estado dinámico de un sistema quedaba fijado por la posición y velocidad de todas las partículas en un instante dado. Hacia finales del siglo XVIII se introdujo la mecánica analítica o racional, como generalización de las leyes de Newton aplicables a sistemas de referencia inerciales. Se concibieron dos enfoques básicamente equivalentes conocidos como mecánica lagrangiana y mecánica hamiltoniana, que pueden llegar a un elevado grado de abstracción y formalización. Los ejemplos clásicos de ecuación del movimiento más conocidos son:

1. La segunda ley de Newton que se usa en mecánica newtoniana:

2. Las ecuaciones de Euler-Lagrange que aparecen en mecánica lagrangiana:

3. Las ecuaciones de Hamilton que aparecen en mecánica hamiltoniana:

 Ecuaciones de movimiento en la teoría de la relatividad:

En la teoría de la relatividad existen dos tipos de entidades físicas, las partículas y los campos. Aunque en última instancia, tal como establece la teoría cuántica de campos, las partículas son campos materiales altamente localizados, en teoría de la relatividad se pueden tratar las partículas como entes físicos localizados en el espacio-tiempo. La distinción entre estos tipos de entidades físicas hace que en teoría de la relatividad existan dos tipos de ecuaciones de movimiento:

1. Las ecuaciones de movimiento de las partículas materiales, que son la generalización relativista de las ecuaciones de la mecánica clásica.

2. Las ecuaciones de "movimiento" o evolución temporal de los campos físicos.

Ecuaciones de movimiento de partículas

El análogo de la primera ley de Newton en teoría de la teoría de la relatividad postula que cuando sobre las partículas no actúa ninguna fuerza estas se mueven a lo largo de las geodésicas del espacio-tiempo, es decir, sobre las líneas más "rectas" posibles o de curvatura mínima. Cuando sobre las partículas actúa alguna fuerza, la ecuación del movimiento en términos de tiempo propio de la partícula, los símbolos de Christoffel dependientes de la curvatura del espacio tiempo, y la fuerza total sobre la partícula viene dada por:

Para una partícula moviéndose a través de un espacio-tiempo plano ( ), con velocidad pequeña respecto a la de la luz ( ) la anterior ecuación se reduce a la segunda ley de Newton.

Ecuaciones de movimiento en teoría clásica de campos:

Los sistemas físicos formados por un conjunto de partículas interactuantes de la mecánica clásica y los sistemas físicos de partículas relativistas sin interacción, son sistemas con un número finito de grados de libertad, cuyas ecuaciones de movimiento vienen dadas por ecuaciones diferenciales ordinarias como todos los ejemplos anteriores. Sin embargo, los campos físicos además de evolución temporal o variación en el tiempo, presentan variación en el espacio. Esa característica hace que los campos físicos se consideren informalmente como sistemas con un número infinito de grados de libertad. Las peculiaridades de los campos hacen que sus ecuaciones de "movimiento" o evolución temporal vengan dadas por ecuaciones en derivadas parciales en lugar de ecuaciones diferenciales ordinarias.

El campo físico más importante en el contexto de la teoría de la Relatividad Especial es el campo electromagnético, cuyas ecuaciones de evolución temporal vienen dadas por las ecuaciones de Maxwell. Estas ecuaciones pueden escribirse de diversas maneras y de diversas notaciones, aunque en el contexto de la teoría de la relatividad conviene escribirlas en forma explícitamente covariante en términos del tensor campo electromagnético Fαβ. En esa forma, las ecuaciones se reducen a dos ecuaciones de la forma (unidades cgs):

Donde se ha usado el convenio de sumación de Einstein, Jβ son las componentes del cuadrivector densidad de corriente. En esas ecuaciones aparecen las coordenadas (x0,x1,x2,x3) = (ct,x,y,z) (donde c es la velocidad de la luz, t el tiempo, y (x,y,z) son las

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com