ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Fisica Moderna Y El Atomo


Enviado por   •  12 de Enero de 2015  •  4.746 Palabras (19 Páginas)  •  736 Visitas

Página 1 de 19

La física moderna y el átomo.

La física moderna comienza a principios del siglo XX, cuando el alemán Max Planck investiga sobre el “cuanto” de energía. Planck decía que eran partículas de energía indivisibles, y que éstas no eran continuas como decía la física clásica. Por ello nace esta nueva rama de la física, que estudia las manifestaciones que se producen en los átomos, los comportamientos de las partículas que forman la materia y las fuerzas que las rigen. Se conoce, generalmente, por estudiar los fenómenos que se producen a la velocidad de la luz o valores cercanos a ella, o cuyas escalas espaciales son del orden del tamaño del átomo o inferiores.

Los temas anteriormente tratados de la física clásica no servían para resolver los problemas presentados, ya que estos se basan en certezas y la física moderna en probabilidades, lo que provocó dificultades para adaptarse a las nuevas ideas.

En 1905, Albert Einstein publicó una serie de trabajos que revolucionaron la física, principalmente representados por “La dualidad onda-partícula de la luz” y “La teoría de la relatividad” entre otros. Estos y los avances científicos como el descubrimiento de la existencia de otras galaxias, la superconductividad, el estudio del núcleo del átomo, y otros, permitieron lograr que años más tarde surgieran avances tecnológicos, como la invención del televisor, los rayos x, el radar, fibra óptica, el computador, etc.

La misión final de la física actual es comprender la relación que existe entre las fuerzas que rigen la naturaleza, la gravedad, el electromagnetismo, la fuerza nuclear fuerte y la fuerza nuclear débil. Comprender y lograr una teoría de unificación, para así poder entender el universo y sus partículas.

Se divide en:

• La mecánica cuántica.

La Mecánica Cuántica brinda el marco general para describir sistemas físicos en todas las escalas, desde las partículas elementales, núcleos, átomos y moléculas hasta la estructura estelar. Su campo de aplicación es universal, pero es en sistemas de dimensiones muy pequeñas donde sus predicciones difieren sustancialmente de aquellas proporcionadas por la física clásica.

La mecánica cuántica resulta así imprescindible para explicar satisfactoriamente todas las propiedades de la materia. Es la base de los desarrollos tecnológicos de mayor éxito de la segunda mitad del siglo XX, constituyendo el fundamento de la química moderna y de la microelectrónica actual (incluyendo las computadoras).

La mecánica cuántica nos revela aspectos muy sorprendentes de la naturaleza, aún más lejanos a nuestra intuición que los predichos por la teoría de la relatividad. Esto es natural pues nuestra intuición se desarrolló en el mundo macroscópico cotidiano (donde las distancias son mucho mayores que las atómicas y las velocidades mucho menores que la velocidad de la luz), el cual es correctamente descripto por la física clásica. En sistemas macroscópicos las predicciones cuánticas coinciden normalmente con las de la física clásica.

En la física clásica, las ondas son ondas y las partículas son partículas. Sin embargo, esto no es así en la mecánica cuántica, donde las ondas electromagnéticas (que de acuerdo a su frecuencia se manifiestan como luz, rayos infrarrojos, ondas de radio, TV, rayos ultravioleta, rayos X, rayos Gamma, etc.) pueden exhibir propiedades de partícula (fotones), mientras que las partículas pueden también exhibir propiedades de onda.

Puede decirse que tanto la luz y la materia existen en la mecánica cuántica como partículas, y lo que se comporta como onda es la probabilidad de encontrar dichas partículas en algún lugar.

Principio de superposición. En nuestro mundo cotidiano, uno puede estar vivo o muerto, es decir, en un estado vivo, o en un estado muerto, pero claramente no puede estar en una superposición de ambos estados, es decir, vivo y muerto al mismo tiempo.

Sin embargo, un sistema cuántico sí puede estar en una superposición de estados. El principio de superposición, uno de los principios fundamentales de la Mecánica Cuántica, establece que si un sistema cuántico puede estar en un estado A (por ejemplo vivo) o en un estado B (muerto), puede también estar en una superposición de ambos.

¿Qué significa esto?: Supongamos un sistema cuántico que puede tener energías A y B. Si el sistema está en el estado de energía A, cuando medimos su energía se obtiene el valor A. Y si está en el estado de energía B, al medir obtenemos la energía B. Pero cuando está en una superposición de ambos estados, cuando medimos se puede obtener tanto la energía A como la B, con ciertas probabilidades, las cuales quedan determinadas por el tipo de superposición. Es importante destacar que no se obtiene un valor intermedio entre A y B.

No es sólo un problema de probabilidades, se podría pensar que "Lo que sucede es que cuando el sistema cuántico está en una superposición de estados, tiene una cierta probabilidad de estar en el estado con energía A, y otra de estar en el estado con energía B. Cuando se mide, se sabe entonces en cuál de los dos estados estaba."

Pero ahora la mecánica cuántica nos sorprende nuevamente: No es posible suponer que el sistema YA ESTABA en el estado A o en el estado B, sino que, para decirlo en forma breve, esto se decide en el momento de la medición, como consecuencia de la interacción entre nuestro aparato de medida y el sistema cuántico que es medido. Es decir, no es posible interpretar la superposición cuántica desde un punto de vista probabilístico tradicional. No existe un modelo clásico local puramente probabilístico que pueda predecir los resultados cuánticos. Este aspecto se ha investigado profundamente en los últimos años y las predicciones de la mecánica cuántica han salido siempre victoriosas en los experimentos.

Entre otras cosas, el principio de superposición permite el fenómeno del entrelazamiento cuántico, el cual a su vez posibilita la teleportación cuántica. Y como si fuera poco, la superposición de estados hace factible una forma completamente nueva de computación, denominada computación cuántica, todavía en fase experimental y actualmente objeto de intensa investigación, la cual está basada en qubits (quantum bits) en lugar de bits, y permitiría reducciones extraordinarias en el tiempo de cómputo de ciertos cálculos.

Para lograr exponer una de las consecuencias de la mecánica cuántica el físico austriaco Erwin Schrödinger realizo el experimento imaginario llamado “El gato de Schrödinger”. Erwin Schrödinger plantea un sistema que se encuentra formado por una caja cerrada y opaca que contiene un gato en su interior, una botella de gas venenoso y un dispositivo, el cual contiene una partícula

...

Descargar como (para miembros actualizados) txt (30 Kb)
Leer 18 páginas más »
Disponible sólo en Clubensayos.com