Ley de gravitación universal
Enviado por JenicitaMejia • 5 de Mayo de 2013 • 2.338 Palabras (10 Páginas) • 464 Visitas
Ley de gravitación universal
La ley de gravitación universal es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. Ésta fue presentada por Isaac Newton en un libro, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.
Así, con todo esto resulta que la ley de la Gravitación Universal predice que la fuerza ejercida entre dos cuerpos de masas y separados una distancia es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir:
Donde
Es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.
Es la constante de la Gravitación Universal.
Es decir, cuanto más masivos sean los cuerpos y más cercanos se encuentren, con mayor fuerza se atraerán. El valor de esta constante de Gravitación Universal no pudo ser establecido por Newton, que únicamente dedujo la forma de la interacción gravitatoria, pero no tenía suficientes datos como para establecer cuantitativamente su valor. Únicamente dedujo que su valor debería ser muy pequeño. Sólo mucho tiempo después se desarrollaron las técnicas necesarias para calcular su valor, y aún hoy es una de las constantes universales conocidas con menor precisión.
en unidades del Sistema Internacional.
Movimiento de los planetas
Como se ha mencionado en el apartado histórico, esta ley permite recuperar y explicar la Tercera Ley de Kepler, que muestra de acuerdo a las observaciones que los planetas que se encuentran más alejados del Sol tardan más tiempo en dar una vuelta alrededor de éste. Además de esto, con dicha ley y usando las leyes de Newton se describe perfectamente tanto el movimiento planetario del Sistema Solar como el movimiento de los satélites (lunas) o sondas enviadas desde la Tierra. Por ello, esta ley estuvo considerada como una ley fundamental por más de 200 años, y aún hoy sigue estando vigente para la mayoría de los cálculos necesarios que atañen a la gravedad.
Uno de los hechos que muestran su precisión es que al analizar las órbitas de los planetas conocidos en torno a 1800 (en donde quedaban por descubrir Neptuno y Plutón), se observaban irregularidades en torno a la órbita de Urano principalmente, y de Saturno y Júpiter en menor medida, respecto a lo que predecía la ley de Newton (junto con las leyes de Kepler). Por esta razón, algunos astrónomos supusieron que dichas irregularidades eran debidas a la existencia de otro planeta más externo, alejado, que todavía no había sido descubierto. Así, tanto Adams como Le Verrier (de forma independiente) calcularon matemáticamente dónde debería encontrarse dicho planeta desconocido para poder explicar dichas irregularidades. Neptuno fue descubierto al poco tiempo por el astrónomo Galle, el 23 de septiembre de 1846, siguiendo sus indicaciones y encontrándolo a menos de un grado de distancia de la posición predicha.
Limitaciones
Si bien la ley de la gravitación universal da una muy buena aproximación para describir el movimiento de un planeta alrededor del Sol, o de un satélite artificial relativamente cercano a la Tierra, durante el siglo XIX se observó algunos pequeños problemas que no se conseguían resolver (similares al de las órbitas de Urano, que sí pudo resolverse tras el descubrimiento de Neptuno). En especial, se encontraba la órbita del planeta Mercurio, la cual en lugar de ser una elipse cerrada, tal y como predecía la teoría de Newton, es una elipse que en cada órbita va rotando, de tal forma que el punto más cercano al Sol (el perihelio) se desplaza ligeramente, unos 43 segundos de arco por siglo, en un movimiento que se conoce como precesión. Aquí, al igual que con el caso de Urano, se postuló la existencia de un planeta más interno al Sol, al cual se le llamó Vulcano, y que no habría sido observado por estar tan próximo al Sol y quedar oculto por su brillo. Sin embargo, éste planeta no existe en la realidad (su existencia era inviable de todas formas), por lo que dicho problema no pudo resolverse, hasta la llegada de la Relatividad General de Einstein.
Además de este problema, en la actualidad el número de las desviaciones observacionales existentes que no se pueden explicar bajo la teoría newtoniana son varias:
Como se ha mencionado ya, la trayectoria del planeta Mercurio no es una elipse cerrada tal como predice la teoría de Newton, sino una cuasi-elipse que gira secularmente, produciendo el problema del avance del perihelio que fue explicado por primera vez sólo con la formulación de la teoría general de la relatividad. Esta discrepancia obedece precisamente al límite de validez que actualmente conocemos para la teoría de Newton: ésta únicamente es válida para cuerpos de poca masa o distancias grandes, lo cual se cumple para todos los planetas del Sistema Solar excepto para Mercurio, puesto que éste se encuentra muy cercano al Sol, un cuerpo lo suficientemente masivo para producir discrepancias observables (aunque recordando que dicha discrepancia es únicamente un efecto de 46 segundos de arco por siglo, el uso de la Relatividad General sigue siendo necesario exclusivamente para cálculos de alta precisión).
Aunque bajo la descripción de la gravedad de Newton ésta únicamente se produce entre cuerpos con masa, se ha observado cómo la luz también se curva (se desvía) como consecuencia de la gravedad producida por un cuerpo masivo, por ejemplo el Sol. Este hecho, que aunque sí podía llegar a interpretarse únicamente usando la ley de la Gravitación Universal, ésta no daba cuenta de la desviación correcta observada, resultó ser una de las primeras predicciones contrastadas que apoyaron la Relatividad General.
La velocidad de rotación de las galaxias no parece responder adecuadamente a la ley de la gravitación, lo que ha llevado a formular el problema de la materia oscura y alternativamente de la dinámica newtoniana modificada. A través de la Tercera ley de Kepler hemos mencionado que los periodos de los cuerpos crecen con la distancia a la que se encuentran del cuerpo masivo. Aplicando dicho principio a las estrellas de una galaxia, debería observarse
...