Leyes De La Termodinamica
Enviado por fernando.gonsua • 30 de Octubre de 2013 • 2.193 Palabras (9 Páginas) • 751 Visitas
LEYES DE LA TERMODINÁMICA
Principio cero de la termodinámica
Este principio o ley cero, establece que existe una determinada propiedad denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado.
En palabras llanas: «Si pones en contacto un objeto frío con otro caliente, ambos evolucionan hasta que sus temperaturas se igualan».
Tiene una gran importancia experimental «pues permite construir instrumentos que midan la temperatura de un sistema» pero no resulta tan importante en el marco teórico de la termodinámica.
El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x, y) no son dependientes del tiempo. El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez esta dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.
Este principio fundamental, aún siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero.
Ley Cero de la termodinámica
Ley de Cero se basa en la observación y en su comprobación experimental. Consideremos dos observaciones como punto de partida:
1. Si dos cuerpos están en contacto térmico por un tiempo los suficientemente largo, ningún cambio futuro observable toma lugar y se dice que el equilibrio térmico prevalece.
2. Dos sistemas que están individualmente en equilibrio térmico con un tercero, estos dos están en equilibrio térmico uno con el otro; los tres sistemas tienen el mismo valor de la propiedad llamada temperatura.
Estas ideas que relacionan la temperatura y del equilibrio térmico se expresan formalmente en la Ley Cero de la Termodinámica:
Ley Cero: Existe para cada sistema termodinámico en equilibrio una propiedad llamada temperatura. La igualdad de la temperatura es una condición necesaria y suficiente para el equilibrio térmico.
La Ley Cero define así una propiedad (temperatura) y describe su comportamiento.
Es importante observar que esta ley es verdadera sin importar cómo medimos la propiedad temperatura.
La Ley del Cero se representa esquemáticamente en la figura
Figure 1: Representación esquemática de la Ley Cero de la Termodinámica
Ejemplo de la ley cero:
La Ley cero de la termodinámica nos dice que si tenemos dos cuerpos llamados A y B, con diferente temperatura uno de otro, y los ponemos en contacto, en un tiempo determinado t, estos alcanzarán la misma temperatura, es decir, tendrán ambos la misma temperatura. Si luego un tercer cuerpo, que llamaremos C se pone en contacto con A y B, también alcanzará la misma temperatura y, por lo tanto, A, B y C tendrán la misma temperatura mientras estén en contacto.
PRIMERA LEY DE LA TERMODINÁMICA.
También conocida como principio de conservación de la energía para la termodinámica «en realidad el primer principio dice más que una ley de conservación», establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolás Leonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Loreto Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.
La ecuación general de la conservación de la energía es la siguiente, que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:
Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema.
Esta última expresión es igual de frecuente encontrarla en la forma ∆U = Q + W. Ambas expresiones, aparentemente contradictorias, son correctas y su diferencia está en que se aplique el convenio de signos IUPAC o el Tradicional.
Figura 2.
Ejemplo de la primera ley.
De la primera ley de la termodinámica se deriva q "la energía no se crea ni se destruye solo se transforma"
ej: enciendes una bombilla se tiene energía eléctrica q pasa a ser energía calórica y esta a su vez pasa a ser energía luminosa. Figura 2.
También se deriva q "la masa no se crea ni se destruye solo se transforma"
ej: en un asado enciendes la leña y esta se reduce a cenizas y al comparar el peso de la leña antes y después de ser quemada será mayor el peso de la leña antes de ser quemada pero esto se debe a q la leña posee partículas volátiles y estas se dispersan en la atmosfera pero jamás se destruye.
SEGUNDA LEY DE LA TERMODINÁMICA.
Esta ley cambia la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el primer principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.
La aplicación más conocida es la de
...