Modelo SV
Enviado por Gabriel Coaquira • 1 de Diciembre de 2020 • Tarea • 1.392 Palabras (6 Páginas) • 130 Visitas
Problemas capítulo 2
1 Determine el ciclo o periodo de vida de los siguientes generadores congruenciales.
- = (21 + 15) mod (31) con = 21[pic 1][pic 2][pic 3]
[pic 4] | 21 |
a | 21 |
c | 15 |
m | 31 |
= (21 + 15) mod (31) = / (m-1)[pic 5][pic 6][pic 7][pic 8]
22 | 0.733333 |
12 | 0.4 |
19 | 0.633333 |
11 | 0.366667 |
29 | 0.966667 |
4 | 0.133333 |
6 | 0.2 |
17 | 0.566667 |
0 | 0 |
15 | 0.5 |
20 | 0.66667 |
1 | 0.03333 |
5 | 0.16667 |
27 | 0.9 |
24 | 0.8 |
23 | 0.77776 |
2 | 0.06667 |
26 | 0.86667 |
3 | 0.1 |
16 | 0.53333 |
10 | 0.33333 |
8 | 0.26667 |
28 | 0.93333 |
14 | 0.46667 |
30 | 1 |
25 | 0.83333 |
13 | 0.43333 |
9 | 0.3 |
18 | 0.6 |
21 | 0.7 |
22 | 0.73333 |
El ciclo de vida es de 31
- = (13 + 9) mod (128) con = 7[pic 9][pic 10][pic 11]
[pic 12] | 7 |
a | 13 |
c | 9 |
m | 128 |
= (13 + 9) mod (128) = / (m-1)[pic 13][pic 14][pic 15][pic 16]
100 | 0.7874 |
29 | 0.2283 |
2 | 0.01574 |
35 | 0.2755 |
80 | 0.6299 |
25 | 0.1968 |
78 | 0.6141 |
127 | 1 |
124 | 0.9763 |
85 | 0.6692 |
90 | 0.70866 |
27 | 0.2125 |
104 | 0.8188 |
81 | 0.6377 |
38 | 0.29921 |
119 | 0.93700 |
20 | 0.1574 |
13 | 0.10236 |
50 | 0.3937 |
19 | 0.14960 |
0 | 0 |
9 | 0.070866 |
126 | 0.992125 |
111 | 0.8740 |
44 | 0.346456 |
69 | 0.5433 |
10 | 0.07874 |
11 | 0.0866 |
24 | 0.1889 |
65 | 0.5118 |
86 | 0.67716 |
103 | 0.81102 |
68 | 0.5354 |
125 | 0.9842 |
98 | 0.7716 |
3 | 0.0236 |
48 | 0.37795 |
121 | 0.9527 |
46 | 0.3622 |
95 | 0.7480 |
92 | 0.7244 |
53 | 0.41732 |
58 | 0.4566 |
123 | 0.9685 |
72 | 0.56692 |
49 | 0.3858 |
6 | 0.0472 |
87 | 0.6850 |
116 | 0.9133 |
109 | 0.8582 |
18 | 0.1417 |
115 | 0.9055 |
96 | 0.7559 |
105 | 0.82677 |
94 | 0.7401 |
79 | 0.62204 |
12 | 0.0944 |
37 | 0.2913 |
106 | 0.8346 |
107 | 0.8425 |
120 | 0.9448 |
33 | 0.2598 |
54 | 0.4251 |
71 | 0.5590 |
36 | 0.2834 |
93 | 0.7322 |
66 | 0.05196 |
99 | 0.7795 |
16 | 0.1259 |
89 | 0.07078 |
14 | 0.1102 |
63 | 0.4960 |
60 | 0.4724 |
21 | 0.1653 |
26 | 0.2047 |
91 | 0.7165 |
40 | 0.3149 |
17 | 0.1338 |
102 | 0.8031 |
55 | 0.4330 |
84 | 0.6614 |
77 | 0.6062 |
114 | 0.8976 |
83 | 0.6535 |
64 | 0.5039 |
73 | 0.5748 |
62 | 0.4881 |
47 | 0.3700 |
108 | 0.8503 |
5 | 0.0393 |
74 | 0.5905 |
75 | 0.5905 |
88 | 0.6929 |
1 | 0.0078 |
22 | 0.1732 |
39 | 0.307 |
4 | 0.03149 |
61 | 0.4803 |
34 | 0.2677 |
67 | 0.5275 |
112 | 0.8881 |
57 | 0.4481 |
110 | 0.8661 |
31 | 0.2440 |
28 | 0.2204 |
117 | 0.9212 |
122 | 0.9606 |
59 | 0.4645 |
8 | 0.06299 |
113 | 0.8897 |
70 | 0.0551 |
23 | 0.1811 |
52 | 0.40944 |
45 | 0.3543 |
82 | 0.64566 |
51 | 0.40157 |
32 | 0.2519 |
41 | 0.3228 |
30 | 0.23622 |
15 | 0.1181 |
76 | 0.5984 |
101 | 0.79527 |
42 | 0.3307 |
43 | 0.3385 |
56 | 0.44094 |
97 | 0.76377 |
118 | 0.92913 |
7 | 0.0551 |
...