Modulacion QAM
Enviado por johnpaul17 • 19 de Diciembre de 2012 • 651 Palabras (3 Páginas) • 344 Visitas
%Run from editor Debug(F)
%This m file(ASK.m) analyzes a coherent amplitute shift keyed(ASK) and a binary
%phase shift keyed(BPSK) communication system. The receiver uses a correlator
%(mixer-integrator [lpf]) configuration with BER measurements comparing measured
%and theoretical results. The band pass and low pass filters used in the receiver are
%constructed using z transforms. M files on BPF and LPF design using z
%transforms can be found in the author index (CJ) mathworks file exchange. A fundemental
%question to ask is: "Why does BPSK show a 3dB improvement(as you will see using the
%program)in BER over ASK?". A simple answer is that the signal for ASK is being
%transmitted only half the time. A reference is provided at the end of the program that
%was used in writing the program. Always remember a journey of a thousand
%miles requires a first one small step.
%========================================
% Set universal parameters
% =======================================
clear
fs=8e5;%sampling frequency
fm=20e3;%square wave modulating frequency(NRZ)= 40KHz bit rate
n=2*(6*fs/fm);
final=(1/fs)*(n-1);
fc=2e5; % carrier frequency
t=0:1/fs:(final);
Fn=fs/2;%nyquist frequency
%=========================================
%Generate square wave by using cosine wave
%==========================================
% cosine wave
% 2 pi fc t is written as below
twopi_fc_t=2*pi*fm*t;
A=1;
phi=0;
x = A * cos(twopi_fc_t + phi);
% square wave
am=1;
x(x>0)=am;
%x(x<0)=0;%use for ASK-comment out BPSK
x(x<0)=-1;%use for BPSK-remember ASK variables become BPSK
subplot(321);
plot(t,x);
axis([1e-4 3e-4 -2 2]);
title('Square Wave Modulating Input To Transmitter');
grid on
car=sin(2*pi*fc*t);%Sinewave carrier waveform
ask=x.*car;%modulate carrier(ASK or BPSK)
subplot(322);
plot(t,ask);
axis([0 100e-6 -2 2]);
title('Modulated Sinewave Carrier Waveform');
grid on;
%=====================================================
%Noise generator SNR=Eb/No=20log(Signalrms/Noiserms)
%======================================================
%vn=0;
vn=.1;%set noise level 0.1~=6db=SNR=Eb/No
noise=vn*(randn(size(t)));%noise generator
subplot(323);
plot(t,noise);
grid on;
title('Noise Level');
axis([0 .6e-3 -1 1]);
askn=(ask+noise);%modulated carrier plus noise
subplot(324);
plot(t,askn);
axis([0 100e-6 -2 2]);
title('Modulated Carrier Waveform Plus Noise');
grid on;
%======================================================================
%Receiver bandpass filter(two poles two zeros)
%======================================================================
fBW=40e3;
f=[0:3e3:4e5];
w=2*pi*f/fs;
z=exp(w*j);
BW=2*pi*fBW/fs;
a=.8547;%BW=2(1-a)/sqrt(a)
p=(j^2*a^2);
gain=.135;
Hz=gain*(z+1).*(z-1)./(z.^2-(p));
subplot(325);
plot(f,abs(Hz));
title('Receiver Bandpass Filter Response');
grid on;
Hz(Hz==0)=10^(8);%avoid log(0)
subplot(326);
plot(f,20*log10(abs(Hz)));
grid on;
title('Receiver -3dB Filter Response');
axis([1e5 3e5 -3 1]);
%filter coefficients
a=[1 0 .7305];%[1 0 p]
b=[.135 0 -.135];%gain*[1 0 -1]
faskn=filter(b,a,askn);
figure;
subplot(321);
plot(t,faskn);
axis([0 100e-6 -2 2]);
title('Receiver BPF Output');
grid on;
cm=faskn.*car;%multiply modulated carrier with unmodulated carrier
subplot(322);
plot(t,cm);
axis([0 100e-6 -2 2]);
grid on;
title('Receiver Multiplier Output');
%===================================================================
%Low pass filter(one pole one zero)
%==================================================================
p=.72;
gain1=.14;%gain=(1-p)/2
Hz1=gain1*(z+1)./(z-(p));
%0.65=53KHz
%0.7=45KHz
%0.72=40KHZ=best for lowest BER-Theory says set equal to the bit rate
%0.75=37KHz
%0.8=28KHz
%subplot(323);
%plot(f,abs(Hz1));
%title('Receiver LPF Response');
%grid on;
subplot(323);
Hz1(Hz1==0)=10^(-8);%avoid log(0)
plot(f,20*log10(abs(Hz1)));
grid on;
title('LPF -3dB response');
...